ترغب بنشر مسار تعليمي؟ اضغط هنا

MgTa2N3: A new reference Dirac semimetal

143   0   0.0 ( 0 )
 نشر من قبل QuanSheng Wu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a prediction of the Dirac semimetal (DSM) phase in MgTa2N3 based on first-principles calculations and symmetry analysis. In this material, the Fermi level is located exactly at the Dirac point without additional Fermi surface pockets. The band inversion associated with the Dirac cone involves the d orbitals of two structurally inequivalent Ta atoms with octahedral and trigonal prismatic coordination spheres. We further show that the lattice symmetry breaking can realize topological phase transitions from the DSM phase to a triple nodal point semimetal, Weyl semimetal or topological insulator. The topologically protected surface states and the non-protected Fermi arc surface states are also studied.



قيم البحث

اقرأ أيضاً

71 - Yongping Du , Feng Tang , Di Wang 2016
Topological semimetals recently stimulate intense research activities. Combining first-principles calculations and effective model analysis, we predict that CaTe is topological node-line semimetal when spin-orbit coupling (SOC) is ignored. We also ob tain the nearly flat surface state which has the drumhead characteristic. When SOC is included, three node lines evolve into a pair of Dirac points along the $M-R$ line. These Dirac points are robust and protected by $C_{4}$ rotation symmetry. Once this crystal symmetry is broken, the Dirac points will be eliminated, and the system becomes a strong topological insulator.
241 - Peizhe Tang , Quan Zhou , Gang Xu 2016
The analogues of elementary particles have been extensively searched for in condensed matter systems because of both scientific interests and technological applications. Recently massless Dirac fermions were found to emerge as low energy excitations in the materials named Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry $mathcal{T}$ and inversion symmetry $mathcal{P}$. Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where $mathcal{T}$ and $mathcal{P}$ are broken but their combination $mathcal{PT}$ is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points with symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by emph{ab initio} calculations. Our results give a new route towards the realization of Dirac materials, and provide a possible platform to study the interplay of Dirac fermion physics and magnetism.
We proposed that BaHgSn is a Dirac semimetal (DSM) which can host hourglass-like surface states (HSSs) as protected by nonsymmorphic glide symmetry. Compared to KHgSb, an isostructural topological crystalline insulator with the same HSSs, BaHgSn has an additional band inversion at $Gamma$ point. This band inversion is induced by the stronger interlayer coupling among Hg-Sn honeycomb layers than that among Hg-Sb-layers in KHgSb, which leads to bulk Dirac nodes in BaHgSn along the layer stacking direction $Gamma$-$A$. In addition, the mirror Chern number $C_{i}$ protected by the mirror plane $overline{M}_{z}$ ($k_z$=0) changes from 2 in KHgSb to 3 in BaHgSn. Therefore, when a compressive uniaxial strain is applied along the $y$ axis to break the rotation symmetry protecting the DSM state, BaHgSn becomes a strong topological insulator with $Z_{2}$ indices of $(1;000)$ and the topological surface Dirac cone co-exists with HSSs on the (010) surface. The Wilson-loop spectra have been calculated to verify these topological features. The calculated surface states, the Fermi surfaces and their quasiparticle interference patterns are ready to be compared with experimental measurements.
394 - Z. K. Liu , B. Zhou , Z. J. Wang 2013
Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as 3D graphene. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDS s possess 3D Dirac fermions in the bulk. The TDS is also an important boundary state mediating numerous novel quantum states, such as topological insulators, Weyl semi-metals, Axion insulators and topological superconductors. By investigating the electronic structure of Na3Bi with angle resolved photoemission spectroscopy, we discovered 3D Dirac fermions with linear dispersions along all momentum directions for the first time. Furthermore, we demonstrated that the 3D Dirac fermions in Na3Bi were protected by the bulk crystal symmetry. Our results establish that Na3Bi is the first model system of 3D TDSs, which can also serve as an ideal platform for the systematic study of quantum phase transitions between rich novel topological quantum states.
175 - Junsen Xiang , Sile Hu , Meng Lyu 2019
Thermoelectric (TE) conversion in conducting materials is of eminent importance for providing renewable energy and solid-state cooling. Although traditionally, the Seebeck effect plays a key role for the TE figure of merit zST, it encounters fundamen tal constraints hindering its conversion efficiency. Most notably, there are the charge compensation of electrons and holes that diminishes this effect, and the intertwinement of the corresponding electrical and thermal conductivities through the Wiedemann-Franz (WF) law which makes their independent optimization in zST impossible. Here, we demonstrate that in the Dirac semimetal Cd3As2 the Nernst effect, i.e., the transverse counterpart of the Seebeck effect, can generate a large TE figure of merit zNT. At room temperature, zNT = 0.5 in a small field of 2 T; it significantly surmounts its longitudinal counterpart zST for any field and further increases upon warming. A large Nernst effect is generically expected in topological semimetals, benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities. In this case, heat and charge transport are orthogonal, i.e., not intertwined by the WF law anymore. More importantly, further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport, but also the anomalous Nernst effect arising from a pronounced Berry curvature. A combination of the former topologically trivial and the latter nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا