ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Observations of the 2002cx-like Supernova 2014ek, and Characterizations of SNe Iax

135   0   0.0 ( 0 )
 نشر من قبل Linyi Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical observations of supernova (SN) 2014ek discovered during the Tsinghua-NAOC Transient Survey (TNTS), which shows properties that are consistent with those of SN 2002cx-like events (dubbed as SNe Iax). The photometry indicates that it is underluminous compared to normal SNe Ia, with the absolute $V$-band peak magnitude being as $-17.66pm0.20$ mag. The spectra are characterized by highly ionized Fe III and intermediate-mass elements (IMEs). The expansion velocity of the ejecta is found to be $sim$5000 km s$^{-1}$ near the maximum light, only half of that measured for normal SNe Ia. The overall spectral evolution is quite similar to SN 2002cx and SN 2005hk, while the absorption features of the main IMEs seem to be relatively weaker. The ${}^{56}$Ni mass synthesized in the explosion is estimated to be about 0.08 M$_{odot}$ from the pseudo bolometric light curve. Based on a large sample of SNe Iax, we examined the relations between peak luminosity, ejecta velocity, decline rate, and peak $V - R$ color but did not find noticeable correlations between these observables, in particular when a few extreme events like SN 2008ha are excluded in the analysis. For this sample, we also studied the birthplace environments and confirm that they still hold the trend of occurring preferentially in late-type spiral galaxies. Moreover, SNe Iax tend to occur in large star-forming regions of their host galaxies, more similar to SNe Ibc than SNe II, favoring that their progenitors should be associated with very young stellar populations.



قيم البحث

اقرأ أيضاً

We present optical observations of a SN 2002cx-like supernova SN 2013en in UGC 11369, spanning from a phase near maximum light (t= +1 d) to t= +60 d with respect to the R-band maximum. Adopting a distance modulus of mu=34.11 +/- 0.15 mag and a total extinction (host galaxy+Milky Way) of $A_V sim1.5$ mag, we found that SN 2013en peaked at $M(R)sim -18.6$ mag, which is underluminous compared to the normal SNe Ia. The near maximum spectra show lines of Si II, Fe II, Fe III, Cr II, Ca II and other intermediate-mass and iron group elements which all have lower expansion velocities (i.e., ~ 6000 km/s). The photometric and spectroscopic evolution of SN 2013en is remarkably similar to those of SN 2002cx and SN 2005hk, suggesting that they are likely to be generated from a similar progenitor scenario or explosion mechanism.
We present observations of supernova (SN) 2008ge, which is spectroscopically similar to the peculiar SN 2002cx, and its pre-explosion site that indicate that its progenitor was probably a white dwarf. NGC 1527, the host galaxy of SN 2008ge, is an S0 galaxy with no evidence of star formation or massive stars. Astrometrically matching late-time imaging of SN 2008ge to pre-explosion HST imaging, we constrain the luminosity of the progenitor star. Since SN 2008ge has no indication of hydrogen or helium in its spectrum, its progenitor must have lost its outer layers before exploding, requiring that it be a white dwarf, a Wolf-Rayet star, or a lower-mass star in a binary system. Observations of the host galaxy show no signs of individual massive stars, star clusters, or H II regions at the SN position or anywhere else, making a Wolf-Rayet progenitor unlikely. Late-time spectroscopy of SN 2008ge show strong [Fe II] lines with large velocity widths compared to other members of this class at similar epochs. These previously unseen features indicate that a significant amount of the SN ejecta is Fe (presumably the result of radioactive decay of 56Ni generated in the SN), further supporting a thermonuclear explosion. Placing the observations of SN 2008ge in the context of observations of other objects in the class of SN, we suggest that the progenitor was most likely a white dwarf.
127 - A. A. Miller 2017
Modern wide-field, optical time-domain surveys must solve a basic optimization problem: maximize the number of transient discoveries or minimize the follow-up needed for the new discoveries. Here, we describe the Color Me Intrigued experiment, the fi rst from the intermediate Palomar Transient Factory (iPTF) to search for transients simultaneously in the $g_mathrm{PTF}$- and $R_mathrm{PTF}$-bands. During the course of this experiment we discovered iPTF$,$16fnm, a new member of the 02cx-like subclass of type Ia supernovae (SNe). iPTF$,$16fnm peaked at $M_{g_mathrm{PTF}} = -15.09 pm 0.17 ; mathrm{mag}$, making it the second least-luminous known type Ia SN. iPTF 16fnm exhibits all the hallmarks of the 02cx-like class: (i) low luminosity at peak, (ii) low ejecta velocities, and (iii) a non-nebular spectra several months after peak. Spectroscopically, iPTF$,$16fnm exhibits a striking resemblence to 2 other low-luminosity 02cx-like SNe: SNe 2007qd and 2010ae. iPTF$,$16fnm and SN 2005hk decline at nearly the same rate, despite a 3 mag difference in brightness at peak. When considering the full subclass of 02cx-like SNe, we do not find evidence for a tight correlation between peak luminosity and decline rate in either the $g$ or $r$ band. We further examine the $g - r$ evolution of 02cx-like SNe and find that their unique color evolution can be used to separate them from 91bg-like and normal type Ia SNe. This selection function will be especially important in the spectroscopically incomplete Zwicky Transient Facility/Large Synoptic Survey Telescope era. We measure the relative rate of 02cx-like SNe to normal SNe Ia and find $r_{N_{02cx}/N_{Ia}} = 25^{+75}_{-18.5}%$. Finally, we close by recommending that LSST periodically evaluate, and possibly update, its observing cadence to maximize transient science.
We report observations of the Type Iax supernova (SN Iax) 2012Z at optical and near-infrared wavelengths from immediately after the explosion until $sim$ $260$ days after the maximum luminosity using the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) Target-of-Opportunity (ToO) program and the Subaru telescope. We found that the near-infrared (NIR) light curve evolutions and color evolutions are similar to those of SNe Iax 2005hk and 2008ha. The NIR absolute magnitudes ($M_{J}sim-18.1$ mag and $M_{H}sim-18.3$ mag) and the rate of decline of the light curve ($Delta$ $m_{15}$($B$)$=1.6 pm 0.1$ mag) are very similar to those of SN 2005hk ($M_{J}sim-17.7$ mag, $M_{H}sim$$-18.0$ mag, and $Delta$ $m_{15}$($B$)$sim1.6$ mag), yet differ significantly from SNe 2008ha and 2010ae ($M_{J}sim-14 - -15$ mag and $Delta$ $m_{15}$($B$)$sim2.4-2.7$ mag). The estimated rise time is $12.0 pm 3.0$ days, which is significantly shorter than that of SN 2005hk or any other Ia SNe. The rapid rise indicates that the $^{56}$Ni distribution may extend into the outer layer or that the effective opacity may be lower than that in normal SNe Ia. The late-phase spectrum exhibits broader emission lines than those of SN 2005hk by a factor of 6--8. Such high velocities of the emission lines indicate that the density profile of the inner ejecta extends more than that of SN 2005hk. We argue that the most favored explosion scenario is a `failed deflagration model, although the pulsational delayed detonations is not excluded.
We present optical and near-infrared observations of the nearby Type Iax supernova (SN) 2014dt from 14 to 410 days after the maximum light. The velocities of the iron absorption lines in the early phase indicated that SN 2014dt showed slower expansio n than the well-observed Type Iax SNe 2002cx, 2005hk and 2012Z. In the late phase, the evolution of the light curve and that of the spectra were considerably slower. The spectral energy distribution kept roughly the same shape after ~100 days, and the bolometric light curve flattened during the same period. These observations suggest the existence of an optically thick component that almost fully trapped the {gamma}-ray energy from 56 Co decay. These findings are consistent with the predictions of the weak deflagration model, leaving a bound white dwarf remnant after the explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا