ترغب بنشر مسار تعليمي؟ اضغط هنا

Character Integral Representation of Zeta function in AdS$_{d+1}$: I. Derivation of the general formula

65   0   0.0 ( 0 )
 نشر من قبل Thomas Basile
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The zeta function of an arbitrary field in $(d+1)$-dimensional anti-de Sitter (AdS) spacetime is expressed as an integral transform of the corresponding $so(2,d)$ representation character, thereby extending the results of arXiv:1603.05387 for AdS$_4$ and AdS$_5$ to arbitrary dimensions. The integration in the variables associated with the $so(d)$ part of the character can be recast into a more explicit form using derivatives. The explicit derivative expressions are presented for AdS$_{d+1}$ with $d=2,3,4,5,6$.



قيم البحث

اقرأ أيضاً

We compute the one-loop free energies of the type-A$_ell$ and type-B$_ell$ higher-spin gravities in $(d+1)$-dimensional anti-de Sitter (AdS$_{d+1}$) spacetime. For large $d$ and $ell$, these theories have a complicated field content, and hence it is difficult to compute their zeta functions using the usual methods. Applying the character integral representation of zeta function developed in the companion paper arXiv:1805.05646 to these theories, we show how the computation of their zeta function can be shortened considerably. We find that the results previously obtained for the massless theories ($ell=1$) generalize to their partially-massless counterparts (arbitrary $ell$) in arbitrary dimensions.
113 - K.B. Alkalaev 2012
We systematically consider the AdS/CFT correspondence for a simplest mixed-symmetry massless gauge field described by hook Young diagram. We introduce the radial gauge fixing and explicitly solve the Dirichlet problem for the hook field equations. So lution finding conveniently splits in two steps. We first define an incomplete solution characterized by a functional freedom and then impose the boundary conditions. The resulting complete solution is fixed unambiguously up to boundary values. Two-point correlation function of hook primary operators is found via the corresponding boundary effective action computed separately in even and odd boundary dimensions. In particular, the higher-derivative action for boundary conformal hook fields is identified with a singular part of the effective action in even dimensions. The bulk/boundary symmetry transmutation within the Dirichlet boundary problem is explicitly studied. It is shown that traces of boundary fields are Stueckelberg-like modes that can be algebraically gauged away so that boundary fields are traceless.
117 - S.C. Lim , L.P. Teo 2008
We derive rigorously explicit formulas of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by zeta regularization method. We s tudy both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy change from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity going to infinity, and we find that these results agree with the usual integration prescription adopted by other authors.
We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime wit h radius given by the equation of motion of the auxiliary scalar field, ie, $S=frac{3}{kappa L}$. However, we see that the non-supersymmetric classical vacua of the unimodular theory are Minkowski and de Sitter spacetimes as well as anti-de Sitter spacetime with radius $l eq L$.
144 - Enrico De Micheli 2020
In this paper, we prove a new integral representation for the Bessel function of the first kind $J_mu(z)$, which holds for any $mu,zinmathbb{C}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا