ترغب بنشر مسار تعليمي؟ اضغط هنا

The Metallicity Dependence of the HI Shielding Layers in Nearby Galaxies

85   0   0.0 ( 0 )
 نشر من قبل Andreas Schruba
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the metallicity dependence of HI surface densities in star-forming regions along many lines of sight within 70 nearby galaxies, probing kpc to 50 pc scales. We employ HI, SFR, stellar mass, and metallicity (gradient) measurements from the literature, spanning a wide range (5 dex) in stellar and gas mass and (1.6 dex) in metallicity. We consider metallicities as observed, or rescaled to match the mass-metallicity relation determined for SDSS galaxies. At intermediate to high metallicities (0.3-2 times solar), we find that the HI surface densities saturate at sufficiently large total gas surface density. The maximal HI columns vary approximately inversely with metallicity, and show little variation with spatial resolution, galactocentric radius, or among galaxies. In the central parts of massive spiral galaxies the HI gas is depressed by factors of 2. The observed behavior is naturally reproduced by metallicity dependent shielding theories for the HI-to-H2 transitions in star-forming galaxies. We show that the inverse scaling of the maximal HI columns with metallicity suggests that the area filling fraction of atomic-molecular complexes in galaxies is of order unity, and weakly dependent on metallicity.



قيم البحث

اقرأ أيضاً

108 - A. Bosma 2016
The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tens ion between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current $rm Lambda$ cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.
We use the EAGLE suite of cosmological hydrodynamical simulations to study how the HI content of present-day galaxies depends on their environment. We show that EAGLE reproduces observed HI mass-environment trends very well, while semi-analytic model s typically overpredict the average HI masses in dense environments. The environmental processes act primarily as an on/off switch for the HI content of satellites with stellar mass Mstar>10^9 Msun. At a fixed Mstar, the fraction of HI-depleted satellites increases with increasing host halo mass M200 in response to stronger environmental effects, while at a fixed M200 it decreases with increasing satellite Mstar as the gas is confined by deeper gravitational potentials. HI-depleted satellites reside mostly, but not exclusively, within the virial radius r200 of their host halo. We investigate the origin of these trends by focussing on three environmental mechanisms: ram pressure stripping by the intra-group medium, tidal stripping by the host halo, and satellite-satellite encounters. By tracking back in time the evolution of the HI-depleted satellites, we find that the most common cause of HI removal is satellite encounters. The timescale for HI removal is typically less than 0.5 Gyr. Tidal stripping occurs in halos of M200<10^{14} Msun within half r200, while the other processes act also in more massive halos, generally within r200. Conversely, we find that ram pressure stripping is the most common mechanism that disturbs the HI morphology of galaxies at redshift z=0. This implies that HI removal due to satellite-satellite interactions occurs on shorter timescales than the other processes.
136 - Ying Zu 2018
The neutral hydrogen~(HI) gas is an important barometer of recent star formation and metal enrichment activities in galaxies. I develop a novel statistical method for predicting the HI-to-stellar mass ratio $f_{gas}$ of galaxies from their stellar ma ss and optical colour, and apply it to a volume-limited galaxy sample jointly observed by the Sloan Digital Sky Survey and the Arecibo Legacy Fast ALFA survey. I eliminate the impact of the Malmquist bias against HI-deficient systems on the $f_{gas}$ predictor by properly accounting for the HI detection probability of each galaxy in the analysis. The best-fitting $f_{gas}$ predictor, with an estimated scatter of $0.272$ dex, provides excellent description to the observed HI mass function. After defining an HI excess parameter as the deviation of the observed $f_{gas}$ from the expected value, I confirm that there exists a strong secondary dependence of the mass-metallicity relation on HI excess. By further examining the 2D metallicity distribution on the specific star formation rate vs. HI excess plane, I show that the metallicity dependence on HI is likely more fundamental than that on specific star formation rate. In addition, I find that the environmental dependence of HI in the local Universe can be effectively described by the cross-correlation coefficient between HI excess and the red galaxy overdensity $rho_{cc}{=}-0.18$. This weak anti-correlation also successfully explains the observed dependence of HI clustering on $f_{gas}$. My method provides a useful framework for learning HI gas evolution from the synergy between future HI and optical galaxy surveys.
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV-r colour and environments, as identified by both the large scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV-r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M$_R$ ~ -13. We use the Dopita et al. (2013) metallicity calibrations to calibrate the relation for all of the data in this analysis. In metallicity-luminosity space we find two sub-populations within a sample of high-confidence SDSS DR8 star-forming galaxies; 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 $pm$ 0.05, while SDSS dwarfs fainter than M$_R$ = -16 have a mean metallicity of 12 + log(O/H) = 8.28 $pm$ 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M$_R$ ~ -16 our sample of 53 star-forming galaxies in 9 HI gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes there is an increase in dispersion in metallicity of our sample, suggestive of a wide range of HI content and environment. In our sample we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6), and four (21%) very metal poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا