ترغب بنشر مسار تعليمي؟ اضغط هنا

The COS-AGN survey: Revealing the nature of circum-galactic gas around hosts of active galactic nuclei

67   0   0.0 ( 0 )
 نشر من قبل Trystyn Berg
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active galactic nuclei (AGN) are thought to play a critical role in shaping galaxies, but their effect on the circumgalactic medium (CGM) is not well studied. We present results from the COS-AGN survey: 19 quasar sightlines that probe the CGM of 20 optically-selected AGN host galaxies with impact parameters $80 < rho_{imp} < 300$ kpc. Absorption lines from a variety of species are measured and compared to a stellar mass and impact parameter matched sample of sightlines through non-AGN galaxies. Amongst the observed species in the COS-AGN sample (HI, CII, SiII, SiIII, CIV, SiIV, NV), only Ly$alpha$ shows a high covering fraction ($94^{+6}_{-23}$% for rest-frame equivalent widths EW $> 124$ mAA) whilst many of the metal ions are not detected in individual sightlines. A sightline-by-sightline comparison between COS-AGN and the control sample yields no significant difference in EW distribution. However, stacked spectra of the COS-AGN and control samples show significant (> 3 sigma) enhancements in the EW of both Ly$alpha$ and SiIII at impact parameters $> 164$ kpc by a factor of $+0.45pm0.05$ dex and $> +0.75$ dex respectively. The lack of detections of both high-ionization species near the AGN and strong kinematic offsets between the absorption systemic galaxy redshifts indicates that neither the AGNs ionization nor its outflows are the origin of these differences. Instead, we suggest the observed differences could result from either AGN hosts residing in haloes with intrinsically distinct gas properties, or that their CGM has been affected by a previous event, such as a starburst, which may also have fuelled the nuclear activity.



قيم البحث

اقرأ أيضاً

We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very different to the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionised gas kinematics at the galaxys centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, but IFS or other data are required to determine their true nature.
We analyze the physical properties and infall rates of the circum-galactic gas around disks obtained in multi-resolved, cosmological, AMR simulations. At intermediate and low redshifts, disks are embedded into an extended, hot, tenuous corona that co ntributes largely in fueling the disk with non-enriched gas whereas the accretion of enriched gas from tidal streams occurs throughout episodic events. We derive an infall rate close to the disk of the same value as the one of the star formation rate in the disk and its temporal evolution as a function of galacto-centric radius nicely shows that the growth of galactic disks proceeds according to an inside-out formation scenario.
The sensitivity of X-ray facilities will increase with the upcoming Athena and the AXIS and Lynx concept missions. These new instruments will allow us to detect fainter active galactic nuclei (AGN), therefore increasing our understanding of the super massive black hole (BH) population in a luminosity regime that can be dominated by X-ray binaries. We analyze the population of faint AGN (L_x (2-10 keV) < 10^42 erg/s) in the Illustris, TNG100, EAGLE, and SIMBA large-scale cosmological simulations. We find that the properties of the faint AGN host galaxies vary from simulation to simulation. In Illustris and EAGLE, faint AGN of L_x (2-10 keV) ~ 10^38 erg/s are powered by low-mass BHs and they are typically located in low-mass star-forming galaxies. In TNG100 and SIMBA, they are mostly associated with more massive BHs in quenched massive galaxies. By modeling the X-ray binary populations (XRB) of the simulated galaxies using empirical scaling relations, we demonstrate that while the AGN dominate the hard X-ray galaxy luminosity at high redshift (z>2), the X-ray binaries often dominate at low redshift (z<2). The X-ray luminosity of star-forming galaxies is often dominated by AGN emission, and of quenched galaxies by XRB emission. These differences can be used to discriminate between galaxy formation models with future high-resolution X-ray observations. To pave the way, we compare the total AGN+XRB hard X-ray luminosity of simulated faint AGN host galaxies to observations of stacked galaxies from Chandra. In general, our comparison indicates that the simulations post-processed with our X-ray modeling assumptions tend to overestimate the total AGN+XRB X-ray luminosity. We find that AGN obscuration can affect by almost one order of magnitude the median AGN+XRB luminosity. Some simulations reveal clear AGN trends as a function of stellar mass, which are less apparent in the current observations.
133 - E. K. S. Hicks 2009
In a sample of local active galactic nuclei studied at a spatial resolution on the order of 10 pc we show that the interstellar medium traced by the molecular hydrogen v=1-0 S(1) 2.1um line forms a geometrically thick, clumpy disk. The kinematics of the molecular gas reveals general rotation, although an additional significant component of random bulk motion is required by the high local velocity dispersion. The size scale of the typical gas disk is found to have a radius of ~30 pc with a comparable vertical height. Within this radius the average gas mass is estimated to be ~10^7 Msun based on a typical gas mass fraction of 10%, which suggests column densities of Nh ~ 5x10^23 cm^-2. Extinction of the stellar continuum within this same region suggest lower column densities of Nh ~ 2x10^22 cm^-2, indicating that the gas distribution on these scales is dominated by dense clumps. In half of the observed Seyfert galaxies this lower column density is still great enough to obscure the AGN at optical/infrared wavelengths. We conclude, based on the spatial distribution, kinematics, and column densities that the molecular gas observed is spatially mixed with the nuclear stellar population and is likely to be associated with the outer extent of any smaller scale nuclear obscuring structure. Furthermore, we find that the velocity dispersion of the molecular gas is correlated with the star formation rate per unit area, suggesting a link between the two phenomena, and that the gas surface density follows known Schmidt-Kennicutt relations. The molecular/dusty structure on these scales may be dynamic since it is possible that the velocity dispersion of the gas, and hence the vertical disk height, is maintained by a short, massive inflow of material into the nuclear region and/or by intense, short-lived nuclear star formation.
X-ray and mid-infrared emission are signposts of the accretion of matter onto the supermassive black holes that reside at the centres of most galaxies. As a major step towards understanding accreting supermassive black holes and their role in the evo lution of galaxies, we will use the 4MOST multi-object spectrograph to provide a highly complete census of active galactic nuclei over a large fraction of the extragalactic sky observed in X-rays by eROSITA that is visible to 4MOST. We will systematically follow up all eROSITA point-like extragalactic X-ray sources (mostly active galactic nuclei), and complement them with a heavily obscured active galactic nuclei selection approach using mid-infrared data from the Wide-field Infrared Survey Explorer (WISE). The X-ray and mid-infrared flux limits of eROSITA and WISE are well matched to the spectroscopic capabilities of a 4-metre-class telescope, allowing us to reach completeness levels of ~80-90% for all X-ray selected active galactic nuclei with fluxes $f_{0.5-2 {rm keV}} > 10^{-14}$ erg s$^{-1}$ cm$^{-2}$; this is about a factor of 30 deeper than the ROSAT all-sky survey. With these data we will determine the physical properties (redshift, luminosity, line emission strength, masses, etc.) of up to one million supermassive black holes, constrain their cosmic evolution and clustering properties, and explore the connection between active galactic nuclei and large-scale structure over redshifts $0 le z le 6$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا