ﻻ يوجد ملخص باللغة العربية
The thermal conductivity $kappa$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured down to 50 mK in seven crystals with doping from $p=0.12$ to $p=0.24$, both in the superconducting state and in the magnetic field-induced normal state. We obtain the electronic residual linear term $kappa_0/T$ as $T to 0$ across the pseudogap critical point $p^{star}= 0.23$. In the normal state, we observe an abrupt drop in $kappa_0/T$ upon crossing below $p^{star}$, consistent with a drop in carrier density $n$ from $1 + p$ to $p$, the signature of the pseudogap phase inferred from the Hall coefficient. A similar drop in $kappa_0/T$ is observed at $H=0$, showing that the pseudogap critical point and its signatures are unaffected by the magnetic field. In the normal state, the Wiedemann-Franz law, $kappa_0/T=L_0/rho(0)$, is obeyed at all dopings, including at the critical point where the electrical resistivity $rho(T)$ is $T$-linear down to $T to 0$. We conclude that the non-superconducting ground state of the pseudogap phase at $T=0$ is a metal whose fermionic excitations carry heat and charge as conventional electrons do.
The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here
The recent detection of charge-density modulations in YBa2Cu3Oy and other cuprate superconductors raises new questions about the normal state of underdoped cuprates. In one class of theories, the modulations are intertwined with pairing in a dual sta
Superconductivity is a quantum phenomenon caused by bound pairs of electrons. In diverse families of strongly correlated electron systems, the electron pairs are not bound together by phonon exchange but instead by some other kind of bosonic fluctuat
A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the ze
The electrical resistivity $rho$ and Hall coefficient R$_H$ of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to $H = 37.5$ T, large enough to access the normal state at $T to 0$, for closely spaced dopings $p$ across