ﻻ يوجد ملخص باللغة العربية
Coupling of axion-like particles (ALPs) to photons in the presence of background magnetic field affects propagation of gamma-rays through magnetized environments. This results in modification in the gamma-ray spectra of sources in or behind galaxy clusters. We search for the ALP induced effects in the Fermi/LAT and MAGIC telescope spectra of the radio galaxy NGC 1275 embedded in Perseus galaxy cluster. We report an order-of-magnitude improved upper limit on the ALP-photon coupling constant in the 0.1-10 neV mass range from non-detection of the ALP imprints on the gamma-ray spectra. The improved upper limit extends into the coupling range in which the ALP particles could form the dark matter. We estimate the sensitivity improvements for the ALP search achievable with extension of the measurements to lower and higher energies with e-ASTROGAM and CTA and show that the gamma-ray probe of ALPs with masses in $10^{-11}-10^{-7}$ eV range will be have order-of-magnitude better sensitivity compared to ground-based experiment IAXO.
We use the first observation of Betelgeuse in hard $X$-rays to perform a novel search for axion-like particles (ALPs). Betelgeuse is not expected to be a standard source of $X$-rays, but light ALPs produced in the stellar core could be converted back
Dark Matter (DM) may be comprised of axion-like particles (ALPs) with couplings to photons and the standard model fermions. In this paper we study photon signals arising from cosmic ray (CR) electron scattering on background ALPs. For a range of mass
Axion-like particles (ALPs) provide a feasible explanation for the observed low TeV opacity of the Universe. If the low TeV opacity is caused by ALP, then the $>{rm TeV}$ fluxes of unresolved extragalactic point sources will be correspondingly enhanc
Axion-Like Particles (ALPs) are predicted by many extensions of the Standard Model and give rise to characteristic dimming and polarization effects in a light beam travelling in a magnetic field. In this Letter, we demonstrate that photon-ALP mixing
Axion-like-particles (ALPs) emitted from the core of a magnetar can convert to photons in its magnetosphere. The resulting photon flux is sensitive to the product of $(i)$ the ALP-nucleon coupling $G_{an}$ which controls the production cross section