Commutative post-Lie algebra structures on Kac--Moody algebras


الملخص بالإنكليزية

We determine commutative post-Lie algebra structures on some infinite-dimensional Lie algebras. We show that all commutative post-Lie algebra structures on loop algebras are trivial. This extends the results for finite-dimensional perfect Lie algebras. Furthermore we show that all commutative post-Lie algebra structures on affine Kac--Moody Lie algebras are almost trivial.

تحميل البحث