ﻻ يوجد ملخص باللغة العربية
Our knowledge of the Sun, its atmosphere, long term activity and space weather potential is severely limited by the lack of good observations of the polar and far-side regions. Observations from a polar vantage point would revolutionize our understanding of the mechanism of solar activity cycles, polar magnetic field reversals, the internal structure and dynamics of the Sun and its atmosphere. Only with extended (many day) observations of the polar regions can the polar flows be determined down to the tachocline where the dynamo is thought to originate. Rapid short period polar orbits, using in situ and remote sensing instrumentation, distributed over a small number of spacecraft, will provide continuous 360o coverage of the solar surface and atmosphere in both longitude and latitude for years on end. This unprecedented full coverage will enable breakthrough studies of the physical connection between the solar interior, the solar atmosphere, the solar wind, solar energetic particles and the inner heliosphere at large. A potential implementation, the Solar Polar Diamond Explorer (SPDEx) built upon the Solar Polar Imager mission design, involves up to four small spacecraft in a 0.48-AU orbit with an inclination of 75o. The orbit is achieved using solar sails or ion engines, both technologies already demonstrated in space.
Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently, they
NASAs WB-57 High Altitude Research Program provides a deployable, mobile, stratospheric platform for scientific research. Airborne platforms are of particular value for making coronal observations during total solar eclipses because of their ability
The Multi-slit Solar Explorer (MUSE) is a proposed mission aimed at understanding the physical mechanisms driving the heating of the solar corona and the eruptions that are at the foundation of space weather. MUSE contains two instruments, a multi-sl
An accurate forecast of flare and CME initiation requires precise measurements of the magnetic energy build up and release in the active regions of the solar atmosphere. We designed a new space weather mission that performs such measurements using ne
Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASAs fi