ترغب بنشر مسار تعليمي؟ اضغط هنا

Recurring obscuration in NGC 3783

73   0   0.0 ( 0 )
 نشر من قبل J. S. Kaastra
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Obscuration of the continuum emission from active galactic nuclei by streams of gas with relatively high velocity (> 1000 km/s) and column density (>3E25 per m2) has been seen in a few Seyfert galaxies. This obscuration has a transient nature. In December 2016 we have witnessed such an event in NGC 3783. The frequency and duration of these obscuration events is poorly known. Here we study archival data of NGC 3783 in order to constrain this duty cycle. We use archival Chandra/NuSTAR spectra taken in August 2016. We also study the hardness ratio of all Swift XRT spectra taken between 2008-2017. In August 2016, NGC 3783 also showed evidence for obscuration. While the column density of the obscuring material is ten times lower than in December 2016, the opacity is still sufficient to block a significant fraction of the ionising X-ray and EUV photons. From the Swift hardness ratio behaviour we find several other epochs with obscuration. Obscuration with columns >1E26 per m2 may take place in about half of the time. Also in archival X-ray data taken by ASCA in 1993 and 1996 we find evidence for obscuration. Obscuration of the ionising photons in NGC 3783 occurs more frequently than previously thought. This may not always have been recognised due to low spectral resolution observations, too limited spectral bandwidth or confusion with underlying continuum variations.



قيم البحث

اقرأ أيضاً

We analyze a 900-ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically-driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier me asurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk-wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e. disk inclination theta_obs and wind density normalization n_o. Considering the most significant absorption features in the (~1.8A-20A) range, we show that the MHD-wind is best described by n(r)~6.9e11(r/ro)^-1.15 [cm^-3] and theta_obs=44deg. We argue that winds launched by X-ray heating, radiation pressure or even MHD winds but with steeper radial density profiles are strongly disfavored by data. Considering the properties of Fe K band absorption features (i.e. Fe xxv and Fe xxvi), while typically prominent in the AGN X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of absorption features, these features are found to be weak in agreement with observation.
In 2016 we carried out a Swift monitoring program to track the X-ray hardness variability of eight type-I AGN over a year. The purpose of this monitoring was to find intense obscuration events in AGN, and thereby study them by triggering joint XMM-Ne wton, NuSTAR, and HST observations. We successfully accomplished this for NGC 3783 in December 2016. We found heavy X-ray absorption produced by an obscuring outflow in this AGN. As a result of this obscuration, interesting absorption features appear in the UV and X-ray spectra, which are not present in the previous epochs. Namely, the obscuration produces broad and blue-shifted UV absorption lines of Ly$alpha$, C IV, and N V, together with a new high-ionisation component producing Fe XXV and Fe XXVI absorption lines. In soft X-rays, only narrow emission lines stand out above the diminished continuum as they are not absorbed by the obscurer. Our analysis shows that the obscurer partially covers the central source with a column density of few $10^{23}$ cm$^{-2}$, outflowing with a velocity of few thousand km s$^{-1}$. The obscuration in NGC 3783 is variable and lasts for about a month. Unlike the commonly-seen warm-absorber winds at pc-scale distances from the black hole, the eclipsing wind in NGC 3783 is located at about 10 light days. Our results suggest the obscuration is produced by an inhomogeneous and clumpy medium, consistent with clouds in the base of a radiatively-driven disk wind at the outer broad-line region of the AGN.
The Suzaku AGN Spin Survey is designed to determine the supermassive black hole spin in six nearby active galactic nuclei (AGN) via deep Suzaku stares, thereby giving us our first glimpse of the local black hole spin distribution. Here, we present an analysis of the first target to be studied under the auspices of this Key Project, the Seyfert galaxy NGC 3783. Despite complexity in the spectrum arising from a multi-component warm absorber, we detect and study relativistic reflection from the inner accretion disk. Assuming that the X-ray reflection is from the surface of a flat disk around a Kerr black hole, and that no X-ray reflection occurs within the general relativistic radius of marginal stability, we determine a lower limit on the black hole spin of a > 0.88 (99% confidence). We examine the robustness of this result to the assumption of the analysis, and present a brief discussion of spin-related selection biases that might affect flux-limited samples of AGN.
Context. Obscuration events caused by outflowing clumps or streams of high column density, low ionisation gas, heavily absorbing the X-ray continuum, have been witnessed in a number of Seyfert galaxies. Aims. We report on the X-ray spectral-timing an alysis of the December 2016 obscuration event in NGC 3783, aimed at probing variability of the X-ray obscurer on the shortest possible timescales. The main goals of this study are to obtain independent constraints on the density, and ultimately on the distance of the obscuring gas, as well as to characterise the impact of variable obscuration on the observed X-ray spectral-timing characteristics of Seyfert galaxies. Methods. We carried out a comparative analysis of NGC 3783 during unobscured (using archival 2000-2001 XMM-Newton data) and obscured states (using XMM-Newton and NuSTAR data from the 2016 observational campaign). The timescales analysed range between ten hours and about one hour. This study was then generalized to discuss the signatures of variable obscuration in the X-ray spectral-timing characteristics of Seyfert galaxies as a function of the physical properties of the obscuring gas. Results. The X-ray obscurer in NGC 3783 is found to vary on timescales between about one hour to ten hours. This variability is incoherent with the variations of the X-ray continuum. A fast response (on timescales shorter than about 1.5 ks) of the ionisation state of the obscuring gas to the short timescale variability of the primary X-ray continuum provides a satisfactory interpretation of all the observed X-ray spectral-timing properties. This study enabled us to put independent constraints on the density and location of the obscuring gas. We found the gas to have a density of $n_{e}> 7.1 times 10^7 rm{cm^{-3}}$, consistent with being part of the broad line region.
Our Swift monitoring program triggered two joint XMM-Newton, NuSTAR and HST observations on 11 and 21 December 2016 targeting NGC 3783, as its soft X-ray continuum was heavily obscured. Consequently, emission features, including the O VII radiative r ecombination continuum, stand out above the diminished continuum. We focus on the photoionized emission features in the December 2016 RGS spectra and compare them to the time-averaged RGS spectrum obtained in 2000--2001 when the continuum was unobscured. A two-phase photoionized plasma is required to account for the narrow emission features. These narrow emission features are weakly varying between 2000--2001 and December 2016. We also find a statistically significant broad emission component in the time-averaged RGS spectrum in 2000--2001. This broad emission component is significantly weaker in December 2016, suggesting that the obscurer is farther away than the X-ray broad-line region. In addition, by analyzing the archival high-resolution X-ray spectra, we find that nine photoionized absorption components with different ionization parameters and kinematics are required for the warm absorber in X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا