ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a systematic offset of -80 micro-arcseconds in the Gaia DR2 parallaxes

64   0   0.0 ( 0 )
 نشر من قبل Keivan Stassun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reprise the analysis of Stassun & Torres (2016), comparing the parallaxes of the eclipsing binaries reported in that paper to the parallaxes newly reported in the Gaia second data release (DR2). We find evidence for a systematic offset of $-82 pm 33$ micro-arcseconds, in the sense of the Gaia parallaxes being too small, for brightnesses $(G lesssim 12)$ and for distances (0.03--3 kpc) in the ranges spanned by the eclipsing binary sample. The offset does not appear to depend strongly on distance within this range, though there is marginal evidence that the offset increases (becomes slightly more negative) for distances $gtrsim 1$ kpc, up to the 3 kpc distances probed by the test sample. The offset reported here is consistent with the expectation that global systematics in the Gaia DR2 parallaxes are below 100 micro-arcseconds.



قيم البحث

اقرأ أيضاً

We test the parallaxes reported in the Gaia first data release using the sample of eclipsing binaries with accurate, empirical distances from Stassun & Torres (2016). We find an average offset of $-$0.25$pm$0.05 mas in the sense of the Gaia parallaxe s being too small (i.e., the distances too long). The offset does not depend strongly on obvious parameters such as color or brightness. However, we find with high confidence that the offset may depend on ecliptic latitude: the mean offset is $-$0.38$pm$0.06 mas in the ecliptic north and $-$0.05$pm$0.09 mas in the ecliptic south. The ecliptic latitude dependence may also be represented by the linear relation, $Deltapi approx -0.22(pm0.05) -0.003(pm0.001)timesbeta$ mas ($beta$ in degrees). Finally, there is a possible dependence of the parallax offset on distance, with the offset becoming negligible for $pilesssim 1$ mas; we discuss whether this could be caused by a systematic error in the eclipsing binary distance scale, and reject this interpretation as unlikely.
Aims: In this work, we aim to provide a reliable list of gravitational lens (GL) candidates based on a search performed over the entire Gaia Data Release 2 (Gaia DR2). We also show that the sole astrometric and photometric informations coming from th e Gaia satellite yield sufficient insights for supervised learning methods to automatically identify GL candidates with an efficiency that is comparable to methods based on image processing. Methods: We simulated 106,623,188 lens systems composed of more than two images, based on a regular grid of parameters characterizing a non-singular isothermal ellipsoid lens model in the presence of an external shear. These simulations are used as an input for training and testing our supervised learning models consisting of Extremely Randomized Trees. The latter are finally used to assign to each of the 2,129,659 clusters of celestial objects a discriminant value that reflects the ability of our simulations to match the observed relative positions and fluxes from each cluster. Once complemented with additional constraints, these discriminant values allowed us to identify GL candidates out of the list of clusters. Results: We report the discovery of 15 new quadruply-imaged lens candidates with angular separations less than 6 and assess the performance of our approach by recovering 12 out of the 13 known quadruply-imaged systems with all their components detected in Gaia DR2 with a misclassification rate of fortuitous clusters of stars as lens systems that is below one percent. Similarly, the identification capability of our method regarding quadruply-imaged systems where three images are detected in Gaia DR2 is assessed by recovering 10 out of the 13 known quadruply-imaged systems having one of their constituting images discarded. The associated misclassification rate varying then between 5.8% and 20%, depending on the image we decided to remove.
Classical Cepheids (CCs) are at the heart of the empirical extragalactic distance ladder. Milky Way CCs are the only stars of this class accessible to trigonometric parallax measurements. Until recently, the most accurate trigonometric parallaxes of Milky Way CCs were the HST/FGS measurements collected by Benedict et al. (2002, 2007) and HST/WFC3 measurements by Riess et al. (2018). Unfortunately, the second Gaia data release (GDR2) has not yet delivered reliable parallaxes for Galactic CCs, failing to replace the HST as the foundation of the Galactic calibrations of the Leavitt law. We aim at calibrating independently the Leavitt law of Milky Way CCs based on the GDR2 catalog of trigonometric parallaxes. As a proxy for the parallaxes of a sample of 23 Galactic CCs, we adopt the GDR2 parallaxes of their spatially resolved companions. As the latter are unsaturated, photometrically stable stars, this novel approach allows us to bypass the GDR2 bias on the parallax of the CCs that is induced by saturation and variability. We present new Galactic calibrations of the Leavitt law in the J, H, K, V, Wesenheit WH and Wesenheit WVK bands based on the GDR2 parallaxes of the CC companions. We show that the adopted value of the zero point of the GDR2 parallaxes, within a reasonable range, has a limited impact on our Leavitt law calibration.
71 - Mark J. Reid 2020
We have re-analyzed the data used by Bessel, von Struve, and Henderson in the 1830s to measure the first parallax distances to stars. We can generally reproduce their results, although we find that von Struve and Henderson have underestimated some of their measurement errors, leading to optimistic parallax uncertainties. We find that temperature corrections for Bessels measured positions are larger than anticipated, explaining some systematics apparent in his data. It has long been a mystery as to why von Struve first announced a parallax for Vega of 0.125 arcsec, only later with more data to revise it to double that value. We resolve this mystery by finding that von Struves early result used two dimensions of position data, which independently give significantly different parallaxes, but when combined only fortuitously give the correct result. With later data, von Struve excluded the problematic dimension, leading to the larger parallax value. Allowing for likely temperature corrections, and using his data from both dimensions, reduces von Struves parallax for Vega to a value consistent with the correct value.
The Perseus Arm is the closest Galactic spiral arm from the Sun, offering an excellent opportunity to study in detail its stellar population. However, its distance has been controversial with discrepancies by a factor of two. Kinematic distances are in the range 3.9-4.2 kpc as compared to 1.9-2.3 kpc from spectrophotometric and trigonometric parallaxes, reinforcing previous claims that this arm exhibits peculiar velocities. We used the astrometric information of a sample of 31 OB stars from the star-forming W3 Complex to identify another 37 W3 members and to derive its distance from their Gaia-DR2 parallaxes with improved accuracy. The Gaia-DR2 distance to the W3 Complex,2.14$^{+0.08}_{-0.07}$ kpc, coincides with the previous stellar distances of $sim$ 2 kpc. The Gaia-DR2 parallaxes tentatively show differential distances for different parts of the W3 Complex: W3 Main, located to the NE direction, is at 2.30$^{+0.19}_{-0.16}$ kpc, the W3 Cluster (IC 1795), in the central region of the complex, is at 2.17$^{+0.12}_{-0.11}$ kpc, and W3(OH) is at 2.00$^{+0.29}_{-0.23}$ kpc to the SW direction. The W3 Cluster is the oldest region, indicating that it triggered the formation of the other two star-forming regions located at the edges of an expanding shell around the cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا