ﻻ يوجد ملخص باللغة العربية
We reprise the analysis of Stassun & Torres (2016), comparing the parallaxes of the eclipsing binaries reported in that paper to the parallaxes newly reported in the Gaia second data release (DR2). We find evidence for a systematic offset of $-82 pm 33$ micro-arcseconds, in the sense of the Gaia parallaxes being too small, for brightnesses $(G lesssim 12)$ and for distances (0.03--3 kpc) in the ranges spanned by the eclipsing binary sample. The offset does not appear to depend strongly on distance within this range, though there is marginal evidence that the offset increases (becomes slightly more negative) for distances $gtrsim 1$ kpc, up to the 3 kpc distances probed by the test sample. The offset reported here is consistent with the expectation that global systematics in the Gaia DR2 parallaxes are below 100 micro-arcseconds.
We test the parallaxes reported in the Gaia first data release using the sample of eclipsing binaries with accurate, empirical distances from Stassun & Torres (2016). We find an average offset of $-$0.25$pm$0.05 mas in the sense of the Gaia parallaxe
Aims: In this work, we aim to provide a reliable list of gravitational lens (GL) candidates based on a search performed over the entire Gaia Data Release 2 (Gaia DR2). We also show that the sole astrometric and photometric informations coming from th
Classical Cepheids (CCs) are at the heart of the empirical extragalactic distance ladder. Milky Way CCs are the only stars of this class accessible to trigonometric parallax measurements. Until recently, the most accurate trigonometric parallaxes of
We have re-analyzed the data used by Bessel, von Struve, and Henderson in the 1830s to measure the first parallax distances to stars. We can generally reproduce their results, although we find that von Struve and Henderson have underestimated some of
The Perseus Arm is the closest Galactic spiral arm from the Sun, offering an excellent opportunity to study in detail its stellar population. However, its distance has been controversial with discrepancies by a factor of two. Kinematic distances are