ﻻ يوجد ملخص باللغة العربية
The proliferation of IoT devices which can be more easily compromised than desktop computers has led to an increase in the occurrence of IoT based botnet attacks. In order to mitigate this new threat there is a need to develop new methods for detecting attacks launched from compromised IoT devices and differentiate between hour and millisecond long IoTbased attacks. In this paper we propose and empirically evaluate a novel network based anomaly detection method which extracts behavior snapshots of the network and uses deep autoencoders to detect anomalous network traffic emanating from compromised IoT devices. To evaluate our method, we infected nine commercial IoT devices in our lab with two of the most widely known IoT based botnets, Mirai and BASHLITE. Our evaluation results demonstrated our proposed methods ability to accurately and instantly detect the attacks as they were being launched from the compromised IoT devices which were part of a botnet.
Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious
Botnets are increasingly used by malicious actors, creating increasing threat to a large number of internet users. To address this growing danger, we propose to study methods to detect botnets, especially those that are hard to capture with the commo
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers due to the less secure nature of the devices. The widely adopted bring your own device (BYOD) policy which allows an employee to bring a
DDoS attacks are simple, effective, and still pose a significant threat even after more than two decades. Given the recent success in machine learning, it is interesting to investigate how we can leverage deep learning to filter out application layer
Crossfire attack is a recently proposed threat designed to disconnect whole geographical areas, such as cities or states, from the Internet. Orchestrated in multiple phases, the attack uses a massively distributed botnet to generate low-rate benign t