ترغب بنشر مسار تعليمي؟ اضغط هنا

On quasinilpotent operators and the invariant subspace problem

57   0   0.0 ( 0 )
 نشر من قبل Adi Tcaciuc
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Adi Tcaciuc




اسأل ChatGPT حول البحث

We show that a bounded quasinilpotent operator $T$ acting on an infinite dimensional Banach space has an invariant subspace if and only if there exists a rank one operator $F$ and a scalar $alphainmathbb{C}$, $alpha eq 0$, $alpha eq 1$, such that $T+F$ and $T+alpha F$ are also quasinilpotent. We also prove that for any fixed rank-one operator $F$, almost all perturbations $T+alpha F$ have invariant subspaces of infinite dimension and codimension.



قيم البحث

اقرأ أيضاً

184 - Adi Tcaciuc 2017
We show that for any bounded operator $T$ acting on an infinite dimensional Banach space there exists an operator $F$ of rank at most one such that $T+F$ has an invariant subspace of infinite dimension and codimension. We also show that whenever the boundary of the spectrum of $T$ or $T^*$ does not consist entirely of eigenvalues, we can find such rank one perturbations that have arbitrarily small norm. When this spectral condition is not satisfied, we can still find suitable finite rank perturbations of arbitrarily small norm, but not necessarily of rank one.
70 - Adi Tcaciuc 2020
We show that for any bounded operator $T$ acting on infinite dimensional, complex Banach space, and for any $varepsilon>0$, there exists an operator $F$ of rank at most one and norm smaller than $varepsilon$ such that $T+F$ has an invariant subspace of infinite dimension and codimension. A version of this result was proved in cite{T19} under additional spectral conditions for $T$ or $T^*$. This solves in full generality the quantitative version of the invariant subspace problem for rank-one perturbations.
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u nder the translations associated with the elements of $G$. Under some additional technical assumptions, we study the W*-algebra $mathcal{V}$ of translation-invariant bounded linear operators acting on $H$. First, we decompose $mathcal{V}$ into the direct integral of the W*-algebras of bounded operators acting on the reproducing kernel Hilbert spaces $widehat{H}_xi$, $xiinwidehat{G}$, generated by the Fourier transform of the reproducing kernel. Second, we give a constructive criterion for the commutativity of $mathcal{V}$. Third, in the commutative case, we construct a unitary operator that simultaneously diagonalizes all operators belonging to $mathcal{V}$, i.e., converts them into some multiplication operators. Our scheme generalizes many examples previously studied by Nikolai Vasilevski and other authors.
We characterize positivity preserving, translation invariant, linear operators in $L^p(mathbb{R}^n)^m$, $p in [1,infty)$, $m,n in mathbb{N}$.
This note contains a representation formula for positive solutions of linear degenerate second-order equations of the form $$ partial_t u (x,t) = sum_{j=1}^m X_j^2 u(x,t) + X_0 u(x,t) qquad (x,t) in mathbb{R}^N times, ]- infty ,T[,$$ proved by a func tional analytic approach based on Choquet theory. As a consequence, we obtain Liouville-type theorems and uniqueness results for the positive Cauchy problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا