ﻻ يوجد ملخص باللغة العربية
We show that a bounded quasinilpotent operator $T$ acting on an infinite dimensional Banach space has an invariant subspace if and only if there exists a rank one operator $F$ and a scalar $alphainmathbb{C}$, $alpha eq 0$, $alpha eq 1$, such that $T+F$ and $T+alpha F$ are also quasinilpotent. We also prove that for any fixed rank-one operator $F$, almost all perturbations $T+alpha F$ have invariant subspaces of infinite dimension and codimension.
We show that for any bounded operator $T$ acting on an infinite dimensional Banach space there exists an operator $F$ of rank at most one such that $T+F$ has an invariant subspace of infinite dimension and codimension. We also show that whenever the
We show that for any bounded operator $T$ acting on infinite dimensional, complex Banach space, and for any $varepsilon>0$, there exists an operator $F$ of rank at most one and norm smaller than $varepsilon$ such that $T+F$ has an invariant subspace
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u
We characterize positivity preserving, translation invariant, linear operators in $L^p(mathbb{R}^n)^m$, $p in [1,infty)$, $m,n in mathbb{N}$.
This note contains a representation formula for positive solutions of linear degenerate second-order equations of the form $$ partial_t u (x,t) = sum_{j=1}^m X_j^2 u(x,t) + X_0 u(x,t) qquad (x,t) in mathbb{R}^N times, ]- infty ,T[,$$ proved by a func