ﻻ يوجد ملخص باللغة العربية
A common way to accelerate shortest path algorithms on graphs is the use of a bidirectional search, which simultaneously explores the graph from the start and the destination. It has been observed recently that this strategy performs particularly well on scale-free real-world networks. Such networks typically have a heterogeneous degree distribution (e.g., a power-law distribution) and high clustering (i.e., vertices with a common neighbor are likely to be connected themselves). These two properties can be obtained by assuming an underlying hyperbolic geometry. To explain the observed behavior of the bidirectional search, we analyze its running time on hyperbolic random graphs and prove that it is $mathcal {tilde O}(n^{2 - 1/alpha} + n^{1/(2alpha)} + delta_{max})$ with high probability, where $alpha in (0.5, 1)$ controls the power-law exponent of the degree distribution, and $delta_{max}$ is the maximum degree. This bound is sublinear, improving the obvious worst-case linear bound. Although our analysis depends on the underlying geometry, the algorithm itself is oblivious to it.
Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running ti
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $Delta$-stepping algorithm proposed by Meyer and Sanders has been widely
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi
The determination of collision-free shortest paths among growing discs has previously been studied for discs with fixed growing rates. Here, we study a more general case of this problem, where: (1) the speeds at which the discs are growing are polyno