ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry

65   0   0.0 ( 0 )
 نشر من قبل Maximilian Katzmann
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A common way to accelerate shortest path algorithms on graphs is the use of a bidirectional search, which simultaneously explores the graph from the start and the destination. It has been observed recently that this strategy performs particularly well on scale-free real-world networks. Such networks typically have a heterogeneous degree distribution (e.g., a power-law distribution) and high clustering (i.e., vertices with a common neighbor are likely to be connected themselves). These two properties can be obtained by assuming an underlying hyperbolic geometry. To explain the observed behavior of the bidirectional search, we analyze its running time on hyperbolic random graphs and prove that it is $mathcal {tilde O}(n^{2 - 1/alpha} + n^{1/(2alpha)} + delta_{max})$ with high probability, where $alpha in (0.5, 1)$ controls the power-law exponent of the degree distribution, and $delta_{max}$ is the maximum degree. This bound is sublinear, improving the obvious worst-case linear bound. Although our analysis depends on the underlying geometry, the algorithm itself is oblivious to it.



قيم البحث

اقرأ أيضاً

Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running ti me. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of $sqrt{2}$. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a $(1 + o(1))$-approximation, asymptotically almost surely, and has a running time of $mathcal{O}(m log(n))$. The proposed algorithm is an adaption of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach.
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P_i$ such that each $P_i$ connects $s_i$ and $t_i$. This is a classical graph problem that is NP-complete even for $k=2$. We study it for AT-free graphs. Unlike its subclasses of permutation graphs and cocomparability graphs, the class of AT-free graphs has no geometric intersection model. However, by a new, structural analysis of the behaviour of Induced Disjoint Paths for AT-free graphs, we prove that it can be solved in polynomial time for AT-free graphs even when $k$ is part of the input. This is in contrast to the situation for other well-known graph classes, such as planar graphs, claw-free graphs, or more recently, (theta,wheel)-free graphs, for which such a result only holds if $k$ is fixed. As a consequence of our main result, the problem of deciding if a given AT-free graph contains a fixed graph $H$ as an induced topological minor admits a polynomial-time algorithm. In addition, we show that such an algorithm is essentially optimal by proving that the problem is W[1]-hard with parameter $|V_H|$, even on a subclass of AT-free graph, namely cobipartite graphs. We also show that the problems $k$-in-a-Path and $k$-in-a-Tree are polynomial-time solvable on AT-free graphs even if $k$ is part of the input. These problems are to test if a graph has an induced path or induced tree, respectively, spanning $k$ given vertices.
121 - Xiaojun Dong , Yan Gu , Yihan Sun 2021
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $Delta$-stepping algorithm proposed by Meyer and Sanders has been widely adopted. However, $Delta$-stepping has no known worst-case bounds for general graphs. The performance of $Delta$-stepping also highly relies on the parameter $Delta$. There have also been lots of algorithms with theoretical bounds, such as Radius-stepping, but they either have no implementations available or are much slower than $Delta$-stepping in practice. We propose a stepping algorithm framework that generalizes existing algorithms such as $Delta$-stepping and Radius-stepping. The framework allows for similar analysis and implementations of all stepping algorithms. We also propose a new ADT, lazy-batched priority queue (LaB-PQ), that abstracts the semantics of the priority queue needed by the stepping algorithms. We provide two data structures for LaB-PQ, focusing on theoretical and practical efficiency, respectively. Based on the new framework and LaB-PQ, we show two new stepping algorithms, $rho$-stepping and $Delta^*$-stepping, that are simple, with non-trivial worst-case bounds, and fast in practice. The stepping algorithm framework also provides almost identical implementations for three algorithms: Bellman-Ford, $Delta^*$-stepping, and $rho$-stepping. We compare our code with four state-of-the-art implementations. On five social and web graphs, $rho$-stepping is 1.3--2.5x faster than all the existing implementations. On two road graphs, our $Delta^*$-stepping is at least 14% faster than existing implementations, while $rho$-stepping is also competitive. The almost identical implementations for stepping algorithms also allow for in-depth analyses and comparisons among the stepping algorithms in practice.
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi ng two food sources s0 and s1. We prove that, under this model, the mass of the mold will eventually converge to the shortest s0 - s1 path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a natural algorithm, that is, an algorithm developed by evolution over millions of years.
The determination of collision-free shortest paths among growing discs has previously been studied for discs with fixed growing rates. Here, we study a more general case of this problem, where: (1) the speeds at which the discs are growing are polyno mial functions of degree $dd$, and (2) the source and destination points are given as query points. We show how to preprocess the $n$ growing discs so that, for two given query points $s$ and $d$, a shortest path from $s$ to $d$ can be found in $O(n^2 log (dd n))$ time. The preprocessing time of our algorithm is $O(n^2 log n + k log k)$ where $k$ is the number of intersections between the growing discs and the tangent paths (straight line paths which touch the boundaries of two growing discs). We also prove that $k in O(n^3dd)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا