We compute the ($q_1,q_2$)-deformed Hermite polynomials by replacing the quantum harmonic oscillator problem to Fibonacci oscillators. We do this by applying the ($q_1, q_2$)-extension of Jackson derivative. The deformed energy spectrum is also found in terms of these parameters. We conclude that the deformation is more effective in higher excited states. We conjecture that this achievement may find applications in the inclusion of disorder and impurity in quantum systems. The ordinary quantum mechanics is easily recovered as $q_1 = 1$ and $q_2to1$ or vice versa.