ﻻ يوجد ملخص باللغة العربية
Self-interacting dark matter provides a promising alternative for the cold dark matter paradigm to solve potential small-scale galaxy formation problems. Nearly all self-interacting dark matter simulations so far have considered only elastic collisions. Here we present simulations of a galactic halo within a generic inelastic model using a novel numerical implementation in the Arepo code to study arbitrary multi-state inelastic dark matter scenarios. For this model we find that inelastic self-interactions can: (i) create larger subhalo density cores compared to elastic models for the same cross section normalisation; (ii) lower the abundance of satellites without the need for a power spectrum cutoff; (iii) reduce the total halo mass by about 10%; (iv) inject the energy equivalent of O(100) million Type II supernovae in galactic haloes through level de-excitation; (v) avoid the gravothermal catastrophe due to removal of particles from halo centers. We conclude that a ~5 times larger elastic cross section is required to achieve the same central density reduction as the inelastic model. This implies that well-established constraints on self-interacting cross sections have to be revised if inelastic collisions are the dominant mode. In this case significantly smaller cross sections can achieve the same core density reduction thereby increasing the parameter space of allowed models considerably.
Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic a
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi
The study of resolved stellar populations in the Milky Way and other Local Group galaxies can provide us with a fossil record of their chemo-dynamical and star-formation histories over timescales of many billions of years. In the galactic components
We propose a novel method to constrain the Milky Way (MW) mass $M_{rm vir}$ with its corona temperature observations. For a given corona density profile, one can derive its temperature distribution assuming a generalized equilibrium model with non-th
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld