ﻻ يوجد ملخص باللغة العربية
We employ classical molecular dynamics simulations to investigate the molecular-level structure of water during the isothermal compression of hexagonal ice (I$h$) and low-density amorphous (LDA) ice at low temperatures. In both cases, the system transforms to high-density amorphous ice (HDA) via a first-order-like phase transition. We employ a sensitive local order metric (LOM) [Martelli et. al., Phys. Rev. B, 97, 064105 (2018)], that can discriminate among different crystalline and non crystalline ice structures and is based on the positions of the oxygen atoms in the first and/or second hydration shell. Our results confirm that LDA and HDA are indeed amorphous, i.e., they lack of polydispersed ice domains. Interestingly, HDA contains a small number of domains that are reminiscent of the unit cell of ice IV, although the hydrogen-bond network (HBN) of these domains differ from the HBN of ice IV. The presence of ice IV-like domains provides some support to the hypothesis that HDA could be the result of a detour on the HBN rearrangement along the I$h$-to-ice IV pressure induced transformation. Both nonequilibrium LDA-to-HDA and I$h$-to-HDA transformations are two-steps processes where a small distortion of the HBN first occurs at low pressures and then, a sudden, extensive re-arrangement of hydrogen bonds at the corresponding transformation pressure follows. Interestingly, the I$h$-to-HDA and LDA-to-HDA transformations occur when LDA and I$h$ have similar local order, as quantified by the site-averaged LOMs. Since I$h$ has a perfect tetrahedral HBN, while LDA does not, it follows that higher pressures are needed to transform I$h$ into HDA than that for the conversion of LDA to HDA. In correspondence with both first-order-like phase transitions, the samples are composed of a large HDA cluster that percolates within the I$h$/LDA samples.
We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of Ih ice at T=80 K is annealed to T=170 K at various pressures to
We study the two-dimensional kagome-ice model derived from a pyrochlore lattice with second- and third-neighbor interactions. The canted moments align along the local $langle 111 rangle$ axes of the pyrochlore and respond to both in-plane and out-of-
The ultraviolet (UV) photodissociation of amorphous water ice at different ice temperatures is investigated using molecular dynamics (MD) simulations and analytical potentials. Previous MD calculations of UV photodissociation of amorphous and crystal
Cathodes are critical components of rechargeable batteries. Conventionally, the search for cathode materials relies on experimental trial-and-error and a traversing of existing computational/experimental databases. While these methods have led to the
We report an investigation of X-ray induced desorption of neutrals, cations and anions from CO ice. The desorption of neutral CO, by far the most abundant, is quantified and discussed within the context of its application to astrochemistry. The desor