ترغب بنشر مسار تعليمي؟ اضغط هنا

Full statistics of homodyne correlation measurements

97   0   0.0 ( 0 )
 نشر من قبل Benjamin K\\\"uhn
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the full statistics of the product events in homodyne correlation measurements, involving a single mode signal, a local oscillator, a linear optical network, and two linear photodetectors. This is performed for the regime of high intensities impinging on the detectors. Our description incorporates earlier proposed homodyne correlation measurement schemes, such as the homodyne cross-correlation and homodyne intensity-correlation measurements. This analysis extends the amount of information retrieved from such types of measurements, since previously attention was paid only to the expectation value of the correlation statistics. As an example, we consider the correlation statistics of coherent, Gaussian, and Fock states. Moreover, nonclassical light is certified on the basis of the variance of the measurement outcome.



قيم البحث

اقرأ أيضاً

We show that the full statistics of the two detectors outputs in a balanced homodyne detection setup involving a local oscillator in an ideal coherent state is experimentally accessible despite the excess noise existing in actual laser sources. This possibility is illustrated using phase randomized coherent states signals from which the statistics of Fock states can accurately be obtained. The experimental verification of the recently predicted [K{u}hn and Vogel, Phys. Rev. A, textbf{98}, 013832 (2018)] two-detector correlation probability for Fock states is presented for states $vert 1 rangle$ and $vert 2 rangle$.
We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state that is rather unrealistic. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.
113 - V. DAuria , S. Fornaro , A. Porzio 2009
We present the full experimental reconstruction of Gaussian entangled states generated by a type--II optical parametric oscillator (OPO) below threshold. Our scheme provides the entire covariance matrix using a single homodyne detector and allows for the complete characterization of bipartite Gaussian states, including the evaluation of purity, entanglement and nonclassical photon correlations, without a priori assumptions on the state under investigation. Our results show that single homodyne schemes are convenient and robust setups for the full characterization of OPO signals and represent a tool for quantum technology based on continuous variable entanglement.
We present a general scheme for treating particle beams as many particle systems. This includes the full counting statistics and the requirements of Bose/Fermi symmetry. In the stationary limit, i.e., for longer and longer beams, the total particle n umber diverges, and a description in Fock space is no longer possible. We therefore extend the formalism to include stationary beams. These beams exhibit a well-defined local counting statistics, by which we mean the full counting statistics of all clicks falling into any given finite interval. We treat in detail a model of a source, creating particles in a fixed state, which then evolve under the free time evolution, and we determine the resulting stationary beam in the far field. In comparison to the one-particle picture we obtain a correction due to Bose/Fermi statistics, which depends on the emission rate. We also consider plane waves as stationary many particle states, and determine the distribution of intervals between successive clicks in such a beam.
We experimentally demonstrate the reconstruction of a photon number conditioned state without using a photon number discriminating detector. By using only phase randomized homodyne measurements, we reconstruct up to the three photon subtracted squeez ed vacuum state. The reconstructed Wigner functions of these states show regions of pronounced negativity, signifying the non-classical nature of the reconstructed states. The techniques presented allow for complete characterization of the role of a conditional measurement on an ensemble of states, and might prove useful in systems where photon counting still proves technically challenging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا