ﻻ يوجد ملخص باللغة العربية
Human motion prediction aims at generating future frames of human motion based on an observed sequence of skeletons. Recent methods employ the latest hidden states of a recurrent neural network (RNN) to encode the historical skeletons, which can only address short-term prediction. In this work, we propose a motion context modeling by summarizing the historical human motion with respect to the current prediction. A modified highway unit (MHU) is proposed for efficiently eliminating motionless joints and estimating next pose given the motion context. Furthermore, we enhance the motion dynamic by minimizing the gram matrix loss for long-term motion prediction. Experimental results show that the proposed model can promisingly forecast the human future movements, which yields superior performances over related state-of-the-art approaches. Moreover, specifying the motion context with the activity labels enables our model to perform human motion transfer.
Human movement is goal-directed and influenced by the spatial layout of the objects in the scene. To plan future human motion, it is crucial to perceive the environment -- imagine how hard it is to navigate a new room with lights off. Existing works
Synthesis of long-term human motion skeleton sequences is essential to aid human-centric video generation with potential applications in Augmented Reality, 3D character animations, pedestrian trajectory prediction, etc. Long-term human motion synthes
Human motion prediction aims to forecast future human poses given a historical motion. Whether based on recurrent or feed-forward neural networks, existing learning based methods fail to model the observation that human motion tends to repeat itself,
Multi-agent motion prediction is challenging because it aims to foresee the future trajectories of multiple agents (textit{e.g.} pedestrians) simultaneously in a complicated scene. Existing work addressed this challenge by either learning social spat
Synthesizing 3D human motion plays an important role in many graphics applications as well as understanding human activity. While many efforts have been made on generating realistic and natural human motion, most approaches neglect the importance of