ﻻ يوجد ملخص باللغة العربية
We theoretically study the effects of loss on the phase sensitivity of an SU(1,1) interferometer with parity detection with various input states. We show that although the sensitivity of phase estimation decreases in the presence of loss, it can still beat the shot-noise limit with small loss. To examine the performance of parity detection, the comparison is performed among homodyne detection, intensity detection, and parity detection. Compared with homodyne detection and intensity detection, parity detection has a slight better optimal phase sensitivity in the absence of loss, but has a worse optimal phase sensitivity with a significant amount of loss with one-coherent state or coherent $otimes$ squeezed state input.
We theoretically study the phase sensitivity of the SU(1,1) interferometer with a coherent light together with a squeezed vacuum input case using the method of homodyne. We find that the homodyne detection has better sensitivity than the intensity de
We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferometer with a coherent state combined with a squeezed vacuum state. This interferometer is formed with two parametric amplifiers for beam splitting and rec
In an unseeded SU(1,1) interferometer composed of two cascaded degenerate parametric amplifiers, with direct detection at the output, we demonstrate a phase sensitivity overcoming the shot noise limit by 2.3 dB. The interferometer is strongly unbalan
We theoretically derive the lower and upper bounds of quantum Fisher information (QFI) of an SU(1,1) interferometer whatever the input state chosen. According to the QFI, the crucial resource for quantum enhancement is shown to be large intramode cor
SU(1,1) interferometers, based on the usage of nonlinear elements, are superior to passive interferometers in phase sensitivity. However, the SU(1,1) interferometer cannot make full use of photons carrying phase information as the second nonlinear el