ﻻ يوجد ملخص باللغة العربية
The need for fast acquisition and automatic analysis of MRI data is growing in the age of big data. Although compressed sensing magnetic resonance imaging (CS-MRI) has been studied to accelerate MRI by reducing k-space measurements, in current CS-MRI techniques MRI applications such as segmentation are overlooked when doing image reconstruction. In this paper, we test the utility of CS-MRI methods in automatic segmentation models and propose a unified deep neural network architecture called SegNetMRI which we apply to the combined CS-MRI reconstruction and segmentation problem. SegNetMRI is built upon a MRI reconstruction network with multiple cascaded blocks each containing an encoder-decoder unit and a data fidelity unit, and MRI segmentation networks having the same encoder-decoder structure. The two subnetworks are pre-trained and fine-tuned with shared reconstruction encoders. The outputs are merged into the final segmentation. Our experiments show that SegNetMRI can improve both the reconstruction and segmentation performance when using compressive measurements.
Compressed sensing MRI is a classic inverse problem in the field of computational imaging, accelerating the MR imaging by measuring less k-space data. The deep neural network models provide the stronger representation ability and faster reconstructio
In multi-contrast magnetic resonance imaging (MRI), compressed sensing theory can accelerate imaging by sampling fewer measurements within each contrast. The conventional optimization-based models suffer several limitations: strict assumption of shar
Recently, state-of-the-art results have been achieved in semantic segmentation using fully convolutional networks (FCNs). Most of these networks employ encoder-decoder style architecture similar to U-Net and are trained with images and the correspond
The core problem of Magnetic Resonance Imaging (MRI) is the trade off between acceleration and image quality. Image reconstruction and super-resolution are two crucial techniques in Magnetic Resonance Imaging (MRI). Current methods are designed to pe
Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. The data-driven methods based on deep neural networks have resulted in promising improvements, com