ﻻ يوجد ملخص باللغة العربية
We prove that, for some irrational torus, the flow map of the periodic fifth-order KP-I equation is not locally uniformly continuous on the energy space, even on the hyperplanes of fixed x-mean value.
Norm inflation implies certain discontinuous dependence of the solution on the initial value. The well-posedness of the mild solution means the existence and uniqueness of the fixed points of the corresponding integral equation. For ${rm BMO}^{-1}$,
The aim of this paper is to investigate the Cauchy problem for the periodic fifth order KP-I equation [partial_t u - partial_x^5 u -partial_x^{-1}partial_y^2u + upartial_x u = 0,~(t,x,y)inmathbb{R}timesmathbb{T}^2] We prove global well-posedness for
We prove the discontinuity for the weak $ L^2(T) $-topology of the flow-map associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in $ H^s(T) $ as soon as $ s<0 $ and thus completes exactly the well-posedness result obtained by the author.
In this paper, we investigate the problem of optimal regularity for derivative semilinear wave equations to be locally well-posed in $H^{s}$ with spatial dimension $n leq 5$. We show this equation, with power $2le ple 1+4/(n-1)$, is (strongly) ill-po
In this article, we address the Cauchy problem for the KP-I equation [partial_t u + partial_x^3 u -partial_x^{-1}partial_y^2u + upartial_x u = 0] for functions periodic in $y$. We prove global well-posedness of this problem for any data in the energy