Electroweak and QCD corrections to $Z$-boson production with one $b$ jet in a massive 5 Flavor Scheme


الملخص بالإنكليزية

We compute the $O(alpha_s alpha^2)$ and $O(alpha_s^2 alpha)$ contributions to the production cross section of a $Z$ boson with one $b$ jet at the Large Hadron Collider (LHC), and study their phenomenological relevance for LHC physics. The accurate prediction of hadronic $Z+b$-jet production is needed to control a background that greatly affects both the measurement of Higgs-boson properties and searches of new physics at the LHC. At the same time it could enable the first precise measurement of the $b$-quark parton distribution function. In this context $b$-quark mass effects become relevant and need to be studied with care, both at the level of the hard process and at the level of the initial- and final-state parton evolution. It is the aim of this paper to explore some of these issues in the framework of a massive 5 Flavor Scheme and to assess the need for both the inclusion of electroweak corrections, in addition to QCD corrections, and $b$-quark mass effects in the prediction of total and differential cross sections for hadronic $Z+b$-jet production.

تحميل البحث