ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisional transport of impurities with flux-surface varying density in stellarators

89   0   0.0 ( 0 )
 نشر من قبل Stefan Buller
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-Z impurities in magnetic confinement devices are prone to develop density variations on the flux-surface, which can significantly affect their transport. In this paper, we generalize earlier analytic stellarator calculations of the neoclassical radial impurity flux in the mixed-collisionality regime (collisional impurity and low-collisionality bulk ions) to include the effect of such flux-surface variations. We find that only in the homogeneous density case is the transport of highly collisional impurities (in the Pfirsch-Schl{u}ter regime) independent of the radial electric field. We study these effects for a Wendelstein 7-X (W7-X) vacuum field, with simple analytic models for the potential perturbation, under the assumption that the impurity density is given by a Boltzmann response to a perturbed potential. In the W7-X case studied, we find that larger amplitude potential perturbations cause the radial electric field to dominate the transport of the impurities. In addition, we find that classical impurity transport can be larger than the neoclassical transport in W7-X.



قيم البحث

اقرأ أيضاً

Avoiding impurity accumulation is a requirement for steady-state stellarator operation. The accumulation of impurities can be heavily affected by variations in their density on the flux-surface. Using recently derived semi-analytic expressions for th e transport of a collisional impurity species with high-$Z$ and flux-surface density-variation in the presence of a low-collisionality bulk ion species, we numerically optimize the impurity density-variation on the flux-surface to minimize the radial peaking factor of the impurities. These optimized density-variations can reduce the core impurity density by $0.75^Z$ (with $Z$ the impurity charge number) in the Large Helical Device case considered here, and by $0.89^Z$ in a Wendelstein 7-X standard configuration case. On the other hand, when the same procedure is used to find density-variations that maximize the peaking factor, it is notably increased compared to the case with no density-variation. This highlights the potential importance of measuring and controlling these variations in experiments.
A large diffusive turbulent contribution to the radial impurity transport in Wendelstein 7-X (W7-X) plasmas has been experimentally inferred during the first campaigns and numerically confirmed by means of gyrokinetic simulations with the code stella . In general, the absence of strong impurity accumulation during the initial W7-X campaigns is attributed to this diffusive term. In the present work the diffusive contribution is also calculated in other stellarator plasmas. In particular, the diffusion (D) and convection (V) coefficients of carbon and iron impurities produced by ion-temperature-gradient (ITG) turbulence are obtained for W7-X, LHD, TJ-II and NCSX. The results show that, although the size of D and V can differ across the four devices, inward convection is found for all of them. For W7-X, TJ-II and NCSX the two coefficients are comparable and the turbulent peaking factor is surprisingly similar. In LHD, appreciably weaker diffusive and convective impurity transport and significantly larger turbulent peaking factor are predicted. All this suggests that ITG turbulence, although not strongly, would lead to negative impurity density gradients in stellarators. Then, considering mixed ITG/Trapped Electron Mode (TEM) turbulence for the specific case of W7-X, it has been quantitatively assessed to what degree pellet fueled reduced turbulence scenarios feature reduced turbulent transport of impurities as well. The results for trace iron impurities show that, although their turbulent transport is not entirely suppressed, a significant reduction of V and a stronger decrease of D are found. Although the diffusion is still above neoclassical levels, the neoclassical convection would gain under such conditions a greater specific weight on the dynamics of impurities in comparison with standard ECRH scenarios.
It is shown that the magnetic-field coils of a stellarator can, at least in principle, be substantially simplified by the use of permanent magnets. Such magnets cannot create toroidal magnetic flux but they can be used to shape the plasma and thus to create poloidal flux and rotational transform, thereby easing the requirements on the magnetic-field coils. As an example, a quasiaxisymmetric stellarator configuration is constructed with only 8 circular coils (all identical) and permanent magnets.
We present a numerical study of collisional transport in a tokamak pedestal in the presence of non-trace impurities, using the radially global $delta f$ neoclassical solver PERFECT [M. Landreman et al. 2014 Plasma Phys. Control. Fusion 56 045005]. It is known that in a tokamak core with non-trace impurities present the radial impurity flux opposes the bulk ion flux to provide an ambipolar particle transport, with the electron transport being negligibly small. However, in a sharp density pedestal with sub-sonic ion flows the electron transport can be comparable to the ion and impurity flows. Furthermore, the neoclassical particle transport is not intrinsically ambipolar, and the non-ambipolarity of the fluxes extends outside the pedestal region by the radial coupling of the perturbations. The neoclassical momentum transport, which is finite in the presence of ion orbit-width scale profile variations, is significantly enhanced when impurities are present in non-trace quantities, even if the total parallel mass flow is dominated by the bulk ions.
In toroidal magnetic confinement devices, such as tokamaks and stellarators, neoclassical transport is usually an order of magnitude larger than its classical counterpart. However, when a high-collisionality species is present in a stellarator optimi zed for low Pfirsch-Schluter current, its classical transport can be comparable to the neoclassical transport. In this letter, we compare neoclassical and classical fluxes and transport coefficients calculated for Wendelstein 7-X (W7-X) and Large Helical Device (LHD) cases. In W7-X, we find that the classical transport of a collisional impurity is comparable to the neoclassical transport for all radii, while it is negligible in the LHD cases, except in the vicinity of radii where the neoclassical transport changes sign. In the LHD case, electrostatic potential variations on the flux-surface significantly enhance the neoclassical impurity transport, while the classical transport is largely insensitive to this effect in the cases studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا