ﻻ يوجد ملخص باللغة العربية
We explore the effect of momentum-driven winds representing radiation pressure driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ~$10^{12.0}-10^{13.4}$ M_sun run with two different feedback models. Our `NoAGN model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating and cosmic X-ray background heating from a meta-galactic background. Our fiducial `MrAGN model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows which result in both `ejective feedback - the outflows themselves which drive gas out of galaxies - and `preventative feedback, which suppresses the inflow of new and recycling gas. As much as 80 % of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling-dominated, with ~70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas re-accretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has higher characteristic velocity (500 - 1,000 km/s versus 100-300 km/s for outflowing NoAGN gas) and travels as far as a few Mpcs. Only ~10% of ejected material is re-accreted in the MrAGN galaxies.
We study low-density axisymmetric accretion flows onto black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the $alpha$-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disk w
We want to test if self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow, from the accretion disk, is not a free
I present results from numerical simulations of gas dynamics outside luminous accretion disks in active galactic nuclei. The gas, gravitationally captured by a super massive black hole, can be driven away by the energy and momentum of the radiation e
Feedback from energy liberated by gas accretion onto black holes (BHs) is an attractive mechanism to explain the exponential cut-off at the massive end of the galaxy stellar mass function (SMF). Semi-analytic models of galaxy formation in which this
We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the