ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce PoMiN, a lightweight $N$-body code based on the post-Minkowskian $N$-body Hamiltonian of Ledvinka et. al., which includes general relativistic effects up to first order in Newtons constant $G$, and all orders in the speed of light $c$. PoMiN is written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless), with a computational complexity that scales as $O(N^2)$. We describe the methods we used to simplify and organize the Hamiltonian, and the tests we performed (convergence, conservation, and analytical comparison tests) to validate the code.
Advanced methods for computing perturbative, quantum-gravitational scattering amplitudes show great promise for improving our knowledge of classical gravitational dynamics. This is especially true in the weak-field and arbitrary-speed (post-Minkowski
We study the gravitational radiation emitted during the scattering of two spinless bodies in the post-Minkowskian Effective Field Theory approach. We derive the conserved stress-energy tensor linearly coupled to gravity and the classical probability
The Effective One-Body formalism of the gravitational two-body problem in general relativity is reconsidered in the light of recent scattering amplitude calculations. Based on the kinematic relationship between momenta and the effective potential, we
We derive the second-order post-Minkowskian solution for the small-deflection motion of test particles in the external field of the Kerr-Newman black hole via an iterative method. The analytical results are exhibited in the coordinate system constitu
We determine the gravitational interaction between two compact bodies up to the sixth power in Newtons constant GN, in the static limit. This result is achieved within the effective field theory approach to General Relativity, and exploits a manifest