ﻻ يوجد ملخص باللغة العربية
Time-resolved, pulsed excitation methods are widely used to deduce optoelectronic properties of semiconductors, including now also Halide Perovskites (HaPs), especially transport properties. Howev-er, as yet no evaluation of their amenability and justification for the use of the results for the above-noted purposes has been reported. To check if we can learn from pulsed measurement results about steady-state phototransport properties, we show here that, although pulsed measurements can be useful to extract information on the recombination kinetics of HaPs, great care should be taken. One issue is that no changes in the material are induced during or as a result of the excitation, and another one concerns in how far pulsed excitation-derived data can be used to find relevant steady-state pa-rameters. To answer the latter question, we revisited pulsed excitation, and propose a novel way to compare between pulsed and steady state measurements at different excitation intensities. We per-formed steady-state photoconductivity and ambipolar diffusion length measurements, as well as pulsed TR-MC and TR-PL measurements as function of excitation intensity on the same samples of dif-ferent MAPbI3 thin films, and find good quasi-quantitative agreement between the results, explaining them with a generalized single level recombination model that describes the basic physics of photo-transport of HaP absorbers. Moreover, we find the first experimental manifestation of the boundaries between several effective recombination regimes that exist in HaPs, by analyzing their phototransport behavior as a function of excitation intensity.
The unprecedented rise in power conversion efficiency of solar cells based on metal halide perovskites (MHPs) has led to enormous research effort to understand their photo-physical properties. In this paper, we review the progress in understanding th
One of the central problems in the study of rarefied gas dynamics is to find the steady-state solution of the Boltzmann equation quickly. When the Knudsen number is large, i.e. the system is highly rarefied, the conventional iteration scheme can lead
The paper presents the results of measurements of XPS valence band spectra of SiO2/MAPbI3 hybrid perovskites subjected to irradiation with visible light and annealing at an exposure of 0-1000 hours. It is found from XPS survey spectra that in both ca
Lead halide perovskites are a remarkable class of materials that have emerged over the past decade as being suitable for application in a broad range of devices, such as solar cells, light-emitting diodes, lasers, transistors, and memory devices, amo
Shapiro time delay is one of the fundamental tests of general relativity and post-Newtonian theories of gravity. Consequently, its measurements can be used to probe the parameter $gamma$ which is related to spacetime curvature produced by a unit mass