ﻻ يوجد ملخص باللغة العربية
We provide a computer-assisted proof that if G is any finite group of order kp, where k < 48 and p is prime, then every connected Cayley graph on G is hamiltonian (unless kp = 2). As part of the proof, it is verified that every connected Cayley graph of order less than 48 is either hamiltonian connected or hamiltonian laceable (or has valence less than three).
We show that if G is a finite group whose commutator subgroup [G,G] has order 2p, where p is an odd prime, then every connected Cayley graph on G has a hamiltonian cycle.
Let $G$ be a finite group. We show that if $|G| = pqrs$, where $p$, $q$, $r$, and $s$ are distinct odd primes, then every connected Cayley graph on $G$ has a hamiltonian cycle.
A graph $G$ is $k$-edge-Hamiltonian if any collection of vertex-disjoint paths with at most $k$ edges altogether belong to a Hamiltonian cycle in $G$. A graph $G$ is $k$-Hamiltonian if for all $Ssubseteq V(G)$ with $|S|le k$, the subgraph induced by
A graph is said to be {em vertex-transitive non-Cayley} if its full automorphism group acts transitively on its vertices and contains no subgroups acting regularly on its vertices. In this paper, a complete classification of cubic vertex-transitive n
Trotter and Erdos found conditions for when a directed $m times n$ grid graph on a torus is Hamiltonian. We consider the analogous graphs on a two-holed torus, and study their Hamiltonicity. We find an $mathcal{O}(n^4)$ algorithm to determine the Ham