ﻻ يوجد ملخص باللغة العربية
Superluminous supernovae (SLSNe) are at least $sim$5 times more luminous than common supernovae (SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESOs Very Large Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of circularly polarized light, however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.
Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the
A rapidly spinning magnetar in a young supernova (SN) can produce a superluminous transient by converting a fraction of its rotational energy into radiation. Here, we present the first three-dimensional hydrodynamical simulations ever performed of a
Superluminous supernovae (SLSNe) are luminous transients that can be detected to high redshifts with upcoming optical time-domain surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). An interesting open question is wh
The discovery of early bumps in some type-I superluminous supernovae (SLSNe-I) before the main peaks offers an important clue to their energy source mechanisms. In this paper, we updated an analytic magnetar-powered model for fitting the multi-band l
Superluminous supernovae (SLSNe) are massive star explosions too luminous to be powered by traditional energy sources, such as radioactive 56Ni. These transients may instead be powered by a central engine, such as a millisecond pulsar or magnetar, wh