ﻻ يوجد ملخص باللغة العربية
The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The methods accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to $<0.1$ dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift ($zlesssim4$) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.
We recently presented a new statistical method to constrain the physics of star formation and feedback on the cloud scale by reconstructing the underlying evolutionary timeline. However, by itself this new method only recovers the relative durations
Recent observational studies aiming to quantify the molecular cloud lifecycle require the use of known reference time-scales to turn the relative durations of different phases of the star formation process into absolute time-scales. We previously con
We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the
Diffuse emission is observed in galaxies in many tracers across the electromagnetic spectrum, including tracers of star formation, such as H$alpha$ and ultraviolet (UV), and tracers of gas mass, such as carbon monoxide (CO) transition lines and the 2
We investigate the balance of power between stars and AGN across cosmic history, based on the comparison between the infrared (IR) galaxy luminosity function (LF) and the IR AGN LF. The former corresponds to emission from dust heated by stars and AGN