ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a source of multi-photon entangled states for linear optical quantum computing

153   0   0.0 ( 0 )
 نشر من قبل Anthony Bennett
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme to make use of recent advances in cavity QED-enhanced resonance fluorescence from quantum dots to generate a stream of entangled and indistinguishable photons. We then demonstrate that we can optically manipulate the state of a trapped hole spin to achieve complete coherent control of a qubit. In combination with the selective cavity enhancement of the resonantly excited transition, we use this capability to perform a proof-of-principle demonstration of our proposal by showing that the time bin of a single photon is dependent on the measured state of the trapped spin.



قيم البحث

اقرأ أيضاً

We present a novel method for quantum tomography of multi-qubit states. We apply the method to spin-multi-photon states, which we produce by periodic excitation of a semiconductor quantum-dot- confined spin every 1/4 of its coherent precession period . These timed excitations lead to the deterministic generation of strings of entangled photons in a cluster state. We show that our method can be used for characterizing the periodic process map, which produces the photonic cluster. From the measured process map, we quantify the robustness of the entanglement in the cluster. The 3-fold enhanced generation rate over previous demonstrations reduces the spin decoherence between the pulses and thereby increases the entanglement.
Precision measurements of optical phases have many applications in science and technology. Entangled multi-photon states have been suggested for performing such measurements with precision that significantly surpasses the shot-noise limit. Until rece ntly, such states have been generated mainly using spontaneous parametric down-conversion -- a process which is intrinsically probabilistic, counteracting the advantages that the entangled photon states might have. Here, we use a semiconductor quantum dot to generate entangled multi-photon states in a deterministic manner, using periodic timed excitation of a confined spin. This way we entangle photons one-by-one at a rate which exceeds 300 MHz. We use the resulting multi-photon state to demonstrate super-resolved optical phase measurement. Our results open up a scalable way for realizing genuine quantum enhanced super-sensitive measurements in the near future.
A photon source based on postselection from entangled photon pairs produced by parametric frequency down-conversion is suggested. Its ability to provide good approximations of single-photon states is examined. Application of this source in quantum cr yptography for quantum key distribution is discussed. Advantages of the source compared to other currently used sources are clarified. Future prospects of the photon source are outlined.
74 - J. Brendel , N. Gisin , W. Tittel 1998
A pulsed source of energy-time entangled photon pairs pumped by a standard laser diode is proposed and demonstrated. The basic states can be distinguished by their time of arrival. This greatly simplifies the realization of 2-photon quantum cryptogra phy, Bell state analyzers, quantum teleportation, dense coding, entanglement swapping, GHZ-states sources, etc. Moreover the entanglement is well protected during photon propagation in telecom optical fibers, opening the door to few-photon applications of quantum communication over long distances.
77 - A. Gilchrist , K. J. Resch , 2006
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of trigge red entangled photon pairs[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا