ﻻ يوجد ملخص باللغة العربية
We establish a criterion for a semigroup identity to hold in the monoid of $n times n$ upper unitriangular matrices with entries in a commutative semiring $S$. This criterion is combinatorial modulo the arithmetic of the multiplicative identity element of $S$. In the case where $S$ is idempotent, the generated variety is the variety $mathbf{J_{n-1}}$, which by a result of Volkov is generated by any one of: the monoid of unitriangular Boolean matrices, the monoid $R_n$ of all reflexive relations on an $n$ element set, or the Catalan monoid $C_n$. We propose $S$-matrix analogues of these latter two monoids in the case where $S$ is an idempotent semiring whose multiplicative identity element is the `top element with respect to the natural partial order on $S$, and show that each generates $mathbf{J_{n-1}}$. As a consequence we obtain a complete solution to the finite basis problem for lossy gossip monoids.
We exhibit a faithful representation of the plactic monoid of every finite rank as a monoid of upper triangular matrices over the tropical semiring. This answers a question first posed by Izhakian and subsequently studied by several authors. A conseq
We exhibit faithful representations of the hypoplactic, stalactic, taiga, sylvester, Baxter and right patience sorting monoids of each finite rank as monoids of upper triangular matrices over any semiring from a large class including the tropical sem
This paper presents new results on the identities satisfied by the sylvester and Baxter monoids. We show how to embed these monoids, of any rank strictly greater than 2, into a direct product of copies of the corresponding monoid of rank 2. This conf
We build, from the collection of all groups of unitriangular matrices, Hopf monoids in Joyals category of species. Such structure is carried by the collection of class function spaces on those groups, and also by the collection of superclass function
It is shown that the category of semi-biproducts in monoids is equivalent to a category of pseudo-actions. A semi-biproduct in monoids is at the same time a generalization of a semi-direct product in groups and a biproduct in commutative monoids. Eve