ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on tidal charge of the supermassive black hole at the Galactic Center with trajectories of bright stars

141   0   0.0 ( 0 )
 نشر من قبل Alexander Zakharov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As it was pointed out recently in Hees et al. (2017), observations of stars near the Galactic Center with current and future facilities provide an unique tool to test general relativity (GR) and alternative theories of gravity in a strong gravitational field regime. In particular, the authors showed that the Yukawa gravity could be constrained with Keck and TMT observations. Some time ago, Dadhich et al. (2001) showed that the Reissner -- Nordstrom metric with a tidal charge is naturally appeared in the framework of Randall -- Sundrum model with an extra dimension ($Q^2$ is called tidal charge and it could be negative in such an approach). Astrophysical consequences of of presence of black holes with a tidal charge are considerered, in particular, geodesics and shadows in Kerr -- Newman braneworld metric are analyzed in (Schee and Stuchlik, 2009a), while profiles of emission lines generated by rings orbiting braneworld Kerr black hole are considered in (Schee and Stuchlik, 2009b). Possible observational signatures of gravitational lensing in a presence of the Reissner -- Nordstrom black hole with a tidal charge at the Galactic Center are discussed in papers by Bin-Nun (2010a, 2010b, 2011). Here we are following such an approach and we obtain analytical expressions for orbital precession for Reissner -- Nordstrom -- de-Sitter solution in post-Newtonian approximation and discuss opportunities to constrain parameters of the metric from observations of bright stars with current and future astrometric observational facilities such as VLT, Keck, GRAVITY, E-ELT and TMT.



قيم البحث

اقرأ أيضاً

Slightly more than two years ago the Event Horizon Telescope (EHT) team presented the first image reconstruction around shadow for the supermassive black hole in centre of M87. It gives an opportunity to evaluate the shadow size. Recently, the EHT te am constrained parameters (charges) of spherical symmetrical metrics of black holes from an estimated allowed interval for shadow radius from observations of M87*. In our papers we obtained analytical expressions for shadow radius as a function of charge (including a tidal one) in the case of the case of Reissner -- Nordstrom metric. Some time ago Bin-Nun proposed to apply Reissner -- Nordstrom metric with a tidal charge as an alternative to the Schwarzschild metric in Sgr A*. If we assume that Reissner -- Nordstrom black hole with a tidal charge exists in M87*, therefore, based on results of shadow evaluation for M87* done by the EHT team we constrain a tidal charge. Similarly, we evaluate a tidal charge from shadow size estimates for Sgr A*.
144 - G. Trap , A. Goldwurm , R. Terrier 2009
Sagittarius A* (Sgr A*) is the supermassive black hole residing at the center of the Milky Way. It has been the main target of an extensive multiwavelength campaign we carried out in April 2007. Herein, we report the detection of a bright flare from the vicinity of the horizon, observed simultaneously in X-rays (XMM/EPIC) and near infrared (VLT/NACO) on April 4th for 1-2 h. For the first time, such an event also benefitted from a soft gamma-rays (INTEGRAL/ISGRI) and mid infrared (VLT/VISIR) coverage, which enabled us to derive upper limits at both ends of the flare spectral energy distribution (SED). We discuss the physical implications of the contemporaneous light curves as well as the SED, in terms of synchrotron, synchrotron self-Compton and external Compton emission processes.
One of the most interesting astronomical objects is the Galactic Center. We concentrate our discussion on a theoretical analysis of observational data of bright stars in the IR-band obtained with large telescopes. We also discuss the importance of VL BI observations of bright structures which could characterize the shadow at the Galactic Center. There are attempts to describe the Galactic Center with alternative theories of gravity and in this case one can constrain parameters of such theories with observational data for the Galactic Center. In particular, theories of massive gravity are intensively developing and theorists have overcome pathologies presented in initi
To evaluate a potential usually one analyzes trajectories of test particles. For the Galactic Center case astronomers use bright stars or photons, so there are two basic observational techniques to investigate a gravitational potential, namely, (a) m onitoring the orbits of bright stars near the Galactic Center as it is going on with 10m Keck twin and four 8m VLT telescopes equipped with adaptive optics facilities (in addition, recently the IR interferometer GRAVITY started to operate with VLT); (b) measuring the size and shape of shadows around black hole with VLBI-technique using telescopes operating in mm-band. At the moment, one can use a small relativistic correction approach for stellar orbit analysis, however, in the future the approximation will not be precise enough due to enormous progress of observational facilities and recently the GRAVITY team found that the first post-Newtonian correction has to be taken into account for the gravitational redshift in the S2 star orbit case. Meanwhile for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations and their interpretations.
167 - Motoyuki Saijo , Ian Hawke 2009
We investigate the collapse of differentially rotating supermassive stars (SMSs) by means of 3+1 hydrodynamic simulations in general relativity. We particularly focus on the onset of collapse to understand the final outcome of collapsing SMSs. We fin d that the estimated ratio of the mass between the black hole (BH) and the surrounding disk from the equilibrium star is roughly the same as the results from numerical simulation. This suggests that the picture of axisymmetric collapse is adequate, in the absence of nonaxisymmetric instabilities, to illustrate the final state of the collapse. We also find that quasi-periodic gravitational waves continue to be emitted after the quasinormal mode frequency has decayed. We furthermore have found that when the newly formed BH is almost extreme Kerr, the amplitude of the quasi-periodic oscillation is enhanced during the late stages of the evolution. Geometrical features, shock waves, and instabilities of the fluid are suggested as a cause of this amplification behaviour. This alternative scenario for the collapse of differentially rotating SMSs might be observable by LISA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا