ﻻ يوجد ملخص باللغة العربية
Although the theory of discrete Painleve (dP) equations is rather young, more and more examples of such equations appear in interesting and important applications. Thus, it is essential to be able to recognize these equations, to be able to identify their type, and to see where they belong in the classification scheme. The definite classification scheme for dP equations was proposed by H. Sakai, who used geometric ideas to identify 22 different classes of these equations. However, in a major contrast with the theory of ordinary differential Painleve equations, there are infinitely many non-equivalent discrete equations in each class. Thus, there is no general form for a dP equation in each class, although some nice canonical examples in each equation class are known. The main objective of this paper is to illustrate that, in addition to providing the classification scheme, the geometric ideas of Sakai give us a powerful tool to study dP equations. We consider a very complicated example of a dP equation that describes a simple Schlesinger transformation of a Fuchsian system and we show how this equation can be identified with a much simpler canonical example of the dP equation of the same type and moreover, we give an explicit change of coordinates transforming one equation into the other. Among our main tools are the birational representation of the affine Weyl symmetry group of the equation and the period map. Even though we focus on a concrete example, the techniques that we use are general and can be easily adapted to other examples.
We present two examples of reductions from the evolution equations describing discrete Schlesinger transformations of Fuchsian systems to difference Painleve equations: difference Painleve equation d-$Pleft({A}_{2}^{(1)*}right)$ with the symmetry gro
Schlesinger transformations are algebraic transformations of a Fuchsian system that preserve its monodromy representation and act on the characteristic indices of the system by integral shifts. One of the important reasons to study such transformatio
In this paper a comprehensive review is given on the current status of achievements in the geometric aspects of the Painleve equations, with a particular emphasis on the discrete Painleve equations. The theory is controlled by the geometry of certain
We express discrete Painleve equations as discrete Hamiltonian systems. The discrete Hamiltonian systems here mean the canonical transformations defined by generating functions. Our construction relies on the classification of the discrete Painleve e
In this paper, we consider the discrete power function associated with the sixth Painleve equation. This function is a special solution of the so-called cross-ratio equation with a similarity constraint. We show in this paper that this system is embe