ﻻ يوجد ملخص باللغة العربية
Zero-Shot Learning (ZSL) in video classification is a promising research direction, which aims to tackle the challenge from explosive growth of video categories. Most existing methods exploit seen-to-unseen correlation via learning a projection between visual and semantic spaces. However, such projection-based paradigms cannot fully utilize the discriminative information implied in data distribution, and commonly suffer from the information degradation issue caused by heterogeneity gap. In this paper, we propose a visual data synthesis framework via GAN to address these problems. Specifically, both semantic knowledge and visual distribution are leveraged to synthesize video feature of unseen categories, and ZSL can be turned into typical supervised problem with the synthetic features. First, we propose multi-level semantic inference to boost video feature synthesis, which captures the discriminative information implied in joint visual-semantic distribution via feature-level and label-level semantic inference. Second, we propose Matching-aware Mutual Information Correlation to overcome information degradation issue, which captures seen-to-unseen correlation in matched and mismatched visual-semantic pairs by mutual information, providing the zero-shot synthesis procedure with robust guidance signals. Experimental results on four video datasets demonstrate that our approach can improve the zero-shot video classification performance significantly.
This paper addresses the task of learning an image clas-sifier when some categories are defined by semantic descriptions only (e.g. visual attributes) while the others are defined by exemplar images as well. This task is often referred to as the Zero
New categories can be discovered by transforming semantic features into synthesized visual features without corresponding training samples in zero-shot image classification. Although significant progress has been made in generating high-quality synth
We propose a conditional generative adversarial network (GAN) model for zero-shot video generation. In this study, we have explored zero-shot conditional generation setting. In other words, we generate unseen videos from training samples with missing
This work proposes a novel attentive graph neural network (AGNN) for zero-shot video object segmentation (ZVOS). The suggested AGNN recasts this task as a process of iterative information fusion over video graphs. Specifically, AGNN builds a fully co
Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribu