ﻻ يوجد ملخص باللغة العربية
In this paper, we study the power and limitations of computing effectively generic sequences using effectively random oracles. Previously, it was known that every 2-random sequence computes a 1-generic sequence (as shown by Kautz) and every 2-random sequence forms a minimal pair in the Turing degrees with every 2-generic sequence (as shown by Nies, Stephan, and Terwijn). We strengthen these results by showing that every Demuth random sequence computes a 1-generic sequence (which answers an open question posed by Barmpalias, Day, and Lewis) and that every Demuth random sequence forms a minimal pair with every pb-generic sequence (where pb-genericity is an effective notion of genericity that is strictly between 1-genericity and 2-genericity). Moreover, we prove that for every comeager $mathcal{G}subseteq 2^omega$, there is some weakly 2-random sequence $X$ that computes some $Yinmathcal{G}$, a result that allows us to provide a fairly complete classification as to how various notions of effective randomness interact in the Turing degrees with various notions of effective genericity.
We investigate the strength of a randomness notion $mathcal R$ as a set-existence principle in second-order arithmetic: for each $Z$ there is an $X$ that is $mathcal R$-random relative to $Z$. We show that the equivalence between $2$-randomness and b
We establish a framework for the study of the effective theory of weak convergence of measures. We define two effective notions of weak convergence of measures on $mathbb{R}$: one uniform and one non-uniform. We show that these notions are equivalent
We study the question, ``For which reals $x$ does there exist a measure $mu$ such that $x$ is random relative to $mu$? We show that for every nonrecursive $x$, there is a measure which makes $x$ random without concentrating on $x$. We give several co
We investigate which infinite binary sequences (reals) are effectively random with respect to some continuous (i.e., non-atomic) probability measure. We prove that for every n, all but countably many reals are n-random for such a measure, where n ind
Quantum information processing shows advantages in many tasks, including quantum communication and computation, comparing to its classical counterpart. The essence of quantum processing lies on the fundamental difference between classical and quantum