ﻻ يوجد ملخص باللغة العربية
We use gauge/string duality to model a doubly heavy diquark in a color antitriplet moving in a thermal plasma at temperatures near the critical. With the assumption that there is no relative motion between the constituents, we calculate the drag force on the diquark. At high enough speed we find that diquark string configurations develop a cusp. In addition, we estimate the spatial string tension at non-zero baryon chemical potential, and also briefly discuss an extension to a triply heavy triquark in a color triplet.
Heavy quark transport coefficients in a strongly coupled Quark-Gluon Plasma can be evaluated using a gauge/string duality and lattice QCD. Via this duality, one can argue that for low momenta the drag coefficient for heavy quarks is proportional to t
The string breaking phenomenon in QCD can be studied using the gauge/string duality. In this approach, one can make estimates of some of the string breaking distances at non-zero temperature and baryon chemical potential. These point towards the enha
Making use of the gauge/string duality, it is possible to study some aspects of the string breaking phenomenon in the three quark system. Our results point out that the string breaking distance is not universal and depends on quark geometry. The esti
We consider the string breaking phenomenon within effective string models which purport to mimic QCD with two light flavors, with a special attention to baryon modes. We make some estimates of the string breaking distances at zero and non-zero baryon
We compute the electric dipole moment of nucleons in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f=2$ degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the