ﻻ يوجد ملخص باللغة العربية
The morphology of planetary nebulae emerging from the common envelope phase of binary star evolution is investigated. Using initial conditions based on the numerical results of hydrodynamical simulations of the common envelope phase it is found that the shapes and sizes of the resulting nebula are very sensitive to the effective temperature of the remnant core, the mass-loss rate at the onset of the common envelope phase, and the mass ratio of the binary system. These parameters are related to the efficiency of the mass ejection after the spiral-in phase, the stellar evolutionary phase (i.e., RG, AGB or TP-AGB), and the degree of departure from spherical symmetry in the stellar wind mass loss process itself respectively. It is found that the shapes are mostly bipolar in the early phase of evolution, but can quickly transition to elliptical and barrel-type shapes. Solutions for nested lobes are found where the outer lobes are usually bipolar and the inner lobes are elliptical, bipolar or barrel-type, a result due to the flow of the photo-evaporated gas from the equatorial region. It is found that the lobes can be produced without the need for two distinct mass ejection events. In all the computations, the bulk of the mass is concentrated in the orbital or equatorial plane, in the form of a large toroid, which can be either neutral (early phases) or photoionized (late phases), depending of the evolutionary state of the system.
We compute successfully the launching of two magnetic winds from two circumbinary disks formed after a common envelope event. The launching is produced by the increase of magnetic pressure due to the collapse of the disks. The collapse is due to inte
Magnetic fields of order $10^1-10^2$ gauss that are present in the envelopes of red giant stars are ejected in common envelope scenarios. These fields could be responsible for the launching of magnetically driven winds in proto-planetary nebulae. Usi
Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN~G222.8-04.2 and
A current issue in the study of planetary nebulae with close binary central stars is the extent to which the binaries affect the shaping of the nebulae. Recent studies have begun to show a high coincidence rate between nebulae with large-scale axial
In 1997 Soker laid out a framework for understanding the formation and shaping of planetary nebulae (PN). Starting from the assumption that non-spherical PN cannot be formed by single stars, he linked PN morphologies to the binary mechanisms that may