ﻻ يوجد ملخص باللغة العربية
Spatial coherence quantifies spatial field correlations over time, and is one of the fundamental properties of light. Here we investigate the spatial coherence of highly multimode lasers in the regime of short time scales. Counter intuitively, we show that in this regime, the temporal (longitudinal) modes play a crucial role in spatial coherence reduction. To evaluate the spatial coherence we measured the temporal dynamics of speckle fields generated by a highly multimode laser with over $10^5$ lasing spatial (transverse) modes, and examined the dependence of speckle contrast on the exposure time of the detecting device. We show that in the regime of short time scale, the spatial and temporal modes interact to form spatio-temporal supermodes, such that the spatial degrees of freedom are encoded onto the temporal modes. As a result, the speckle contrast depends on the number of temporal modes, and the degree of spatial coherence is reduced and the speckle contrast is suppressed. In the regime of long times scale, the supermodes are no longer a valid representation of the laser modal structure. Consequently, the spatial coherence is independent of the temporal modes, and the classical result, where the speckle contrast is suppressed as the number of spatial modes, is obtained. Due to this new spatio-temporal mechanism, highly multimode lasers can be used for speckle suppression in high-speed full-field imaging applications, as we demonstrate here for imaging of a fast moving object.
Long-range speckle correlations play an essential role in wave transport through disordered media, but have rarely been studied in other complex systems. Here we discover spatio-temporal intensity correlations for an optical pulse propagating through
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e
The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a siz
The invention of lasers 60 years ago is one of the greatest breakthroughs in modern optics. Throughout the years, lasers have enabled major scientific and technological advancements, and have been exploited in numerous applications due to their advan
The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme ultraviolet range and bandwidths exceeding tens of eV. They are often produced as a train of pulses separated by half th