ﻻ يوجد ملخص باللغة العربية
We present a composite model and radiative transfer simulations of the massive star forming core W33A MM1. The model was tailored to reproduce the complex features observed with ALMA at $approx 0.2$ arcsec resolution in CH$_3$CN and dust emission. The MM1 core is fragmented into six compact sources coexisting within $sim 1000$ au. In our models, three of these compact sources are better represented as disc-envelope systems around a central (proto)star, two as envelopes with a central object, and one as a pure envelope. The model of the most prominent object (Main) contains the most massive (proto)star ($M_starapprox7~M_odot$) and disc+envelope ($M_mathrm{gas}approx0.4~M_odot$), and is the most luminous ($L_mathrm{Main} sim 10^4~L_odot$). The model discs are small (a few hundred au) for all sources. The composite model shows that the elongated spiral-like feature converging to the MM1 core can be convincingly interpreted as a filamentary accretion flow that feeds the rising stellar system. The kinematics of this filament is reproduced by a parabolic trajectory with focus at the center of mass of the region. Radial collapse and fragmentation within this filament, as well as smaller filamentary flows between pairs of sources are proposed to exist. Our modelling supports an interpretation where what was once considered as a single massive star with a $sim 10^3$ au disc and envelope, is instead a forming stellar association which appears to be virialized and to form several low-mass stars per high-mass object.
Massive star-forming regions exhibit an extremely rich and diverse chemistry, which in principle provides a wealth of molecular probes, as well as laboratories for interstellar prebiotic chemistry. Since the chemical structure of these sources displa
Here we present the first results from ALMA observations of 1 mm polarized dust emission towards the W43-MM1 high mass star forming clump. We have detected a highly fragmented filament with source masses ranging from 14Msun to 312Msun, where the larg
Interferometric observations of the W33A massive star-formation region, performed with the Submillimeter Array (SMA) and the Very Large Array (VLA) at resolutions from 5 arcsec (0.1 pc) to 0.5 arcsec (0.01 pc) are presented. Our three main findings a
The debris disc around HD 172555 was recently imaged in near-infrared polarised scattered light by the Very Large Telescopes Spectro-Polarimetric High-contrast Exoplanet REsearch instrument. Here we present optical aperture polarisation measurements
Cold massive cores are one of the earliest manifestations of high mass star formation. Following the detection of SiO emission from G333.125-0.562, a cold massive core, further investigations of the physics, chemistry and dynamics of this object has