ﻻ يوجد ملخص باللغة العربية
We assemble the largest sample of oxygen rich Miras to date and highlight their importance for age-dating the components of the Galaxy. Using data from the Catalina Rapid Transient Survey and the All Sky Automated Survey for Supernovae, we extract a clean sample of $sim 2,400$ O-Miras, stretching from the Galactic Bulge to the distant halo. Given that the period of O-Miras correlates with age, this offers a new way of determining age gradients throughout the Galaxy. We use our sample to show (i) disk O-Miras have periods increasing on moving outwards from ~ 3 to 15 kpc, so the outer disk O-Miras are younger than the inner disk, (ii) the transition from younger disk to halo O-Miras occurs at r ~ 15 kpc and is marked by a plummeting in period, (iii) there exists a population of young O-Miras likely kicked from the disk to heights of order of |Z| ~ 10 kpc, (iv) great circle counts of old Miras show strong evidence for distant debris agglomeration associated with the Magellanic Clouds, (v) seven stars in our samples are located at distances between 200 and 500 kpc surpassing all previously established records, and, finally, (vi) O-Miras may be present in the Fornax, Sculptor, Sextans and Leo II Galactic dwarf spheroidals, as well as the distant globular cluster Pal 4. We spotlight the importance of O-Mira in the Era of Gaia as universal chronometers of the Galactic populations.
Radial age gradients hold the cumulative record of the multitude of physical processes driving the build-up of stellar populations and the ensuing star formation (SF) quenching process in galaxy bulges, therefore potentially sensitive discriminators
We explore the origin of stellar metallicity gradients in simulated and observed dwarf galaxies. We use FIRE-2 cosmological baryonic zoom-in simulations of 26 isolated galaxies as well as existing observational data for 10 Local Group dwarf galaxies.
Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbl
The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyze the spatial distribution of ages within 19 young (median t<3 Myr on the Siess et al. (2000) timescale), morphologically simp
Measurement and astrophysical interpretation of characteristic gamma-ray lines from nucleosynthesis was one of the prominent science goals of the INTEGRAL mission and in particular its spectrometer SPI. Emission from 26Al and from 60Fe decay lines or