ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling between dynamic magnetic and charge-order correlations in the cuprate superconductor Nd$_{2-x}$Ce$_{x}$CuO$_4$

145   0   0.0 ( 0 )
 نشر من قبل Eduardo H. Da Silva Neto
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge order has now been observed in several cuprate high-temperature superconductors. We report a resonant inelastic x-ray scattering experiment on the electron-doped cuprate Nd$_{2-x}$Ce$_{x}$CuO$_4$ that demonstrates the existence of dynamic correlations at the charge order wave vector. Upon cooling we observe a softening in the electronic response, which has been predicted to occur for a d-wave charge order in electron-doped cuprates. At low temperatures, the energy range of these excitations coincides with that of the dispersive magnetic modes known as paramagnons. Furthermore, measurements where the polarization of the scattered photon is resolved indicate that the dynamic response at the charge order wave vector primarily involves spin-flip excitations. Overall, our findings indicate a coupling between dynamic magnetic and charge-order correlations in the cuprates.



قيم البحث

اقرأ أيضاً

We use neutron scattering to study the influence of a magnetic field on spin structures of Nd$_2$CuO$_4$. On cooling from room temperature, Nd$_2$CuO$_4$ goes through a series of antiferromagnetic (AF) phase transitions with different noncollinear sp in structures. While a c-axis aligned magnetic field does not alter the basic zero-field noncollinear spin structures, a field parallel to the CuO$_2$ plane can transform the noncollinear structure to a collinear one (spin-flop transition), induce magnetic disorder along the c-axis, and cause hysteresis in the AF phase transitions. By comparing these results directly to the magnetoresistance (MR) measurements of Nd$_{1.975}$Ce$_{0.025}$CuO$_4$, which has essentially the same AF structures as Nd$_2$CuO$_4$, we find that a magnetic-field-induced spin-flop transition, AF phase hysteresis, and spin c-axis disorder all affect the transport properties of the material. Our results thus provide direct evidence for the existence of a strong spin-charge coupling in electron-doped copper oxides.
High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essentia l to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4pmdelta} (NCCO) shows bulk superconductivity above x approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].
We report a Cu K- and L$_3$-edge resonant inelastic x-ray scattering study of charge and spin excitations of bulk Nd$_{2-x}$Ce$_x$CuO$_4$, with focus on post-growth annealing effects. For the parent compound Nd$_2$CuO$_4$ ($x = 0$), a clear charge-tr ansfer gap is observed in the as-grown state, whereas the charge excitation spectra indicate that electrons are doped in the annealed state. This is consistent with the observation that annealed thin-film and polycrystalline samples of RE$_2$CuO$_4$ (RE = rare earth) can become metallic and superconducting at sufficiently high electron concentrations without Ce doping. For $x = 0.16$, a Ce concentration for which it is known that oxygen reduction destroys long-range antiferromagnetic order and induces superconductivity, we find that the high-energy spin excitations of non-superconducting as-grown and superconducting annealed crystals are nearly identical. This finding is in stark contrast to the significant changes in the low-energy spin excitations previously observed via neutron scattering.
The electrical resistivity $rho$ and Hall coefficient R$_H$ of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to $H = 37.5$ T, large enough to access the normal state at $T to 0$, for closely spaced dopings $p$ across the pseudogap critical point at $p^star = 0.235$. Below $p^star$, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing $p$. Taken together, these upturns show that the normal-state carrier density $n$ at $T = 0$ drops upon entering the pseudogap phase. Quantitatively, it goes from $n = 1 + p$ at $p = 0.24$ to $n = p$ at $p = 0.20$. By contrast, the mobility does not change appreciably, as revealed by the magneto-resistance. The transition has a width in doping and some internal structure, whereby R$_H$ responds more slowly than $rho$ to the opening of the pseudogap. We attribute this difference to a Fermi surface that supports both hole-like and electron-like carriers in the interval $0.2 < p < p^star$, with compensating contributions to R$_H$. Our data are in excellent agreement with recent high-field data on YBCO and LSCO. The quantitative consistency across three different cuprates shows that a drop in carrier density from $1 + p$ to $p$ is a universal signature of the pseudogap transition at $T=0$. We discuss the implication of these findings for the nature of the pseudogap phase.
179 - Young-June Kim , G. D. Gu , T. Gog 2007
We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in $rm La_{2-x}Ba_xCuO_4 (x approx 1/8)$, for which the superconducting $T_c$ is greatly suppressed. Strong superlattice reflections corresponding to static ord ering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring $rm CuO_2$ planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at $sim 230AA$, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا