ﻻ يوجد ملخص باللغة العربية
The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum $mathfrak{sl}_2$ representation category. It also establishes a precise relation between the simple transitive $2$-representations of both monoidal categories, which are indexed by bicolored $mathsf{ADE}$ Dynkin diagrams. Using the quantum Satake correspondence between affine $mathsf{A}_{2}$ Soergel bimodules and the semisimple quotient of the quantum $mathfrak{sl}_3$ representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive $2$-representations corresponding to tricolored generalized $mathsf{ADE}$ Dynkin diagrams.
In this paper we show that Soergel bimodules for finite Coxeter types have only finitely many equivalence classes of simple transitive $2$-representations and we complete their classification in all types but $H_{3}$ and $H_{4}$.
We call a von Neumann algebra with finite dimensional center a multifactor. We introduce an invariant of bimodules over $rm II_1$ multifactors that we call modular distortion, and use it to formulate two classification results. We first classify fi
We discuss the structure of the Motzkin algebra $M_k(D)$ by introducing a sequence of idempotents and the basic construction. We show that $cup_{kgeq 1}M_k(D)$ admits a factor trace if and only if $Din {2cos(pi/n)+1|ngeq 3}cup [3,infty)$ and higher c
We study a presentation of Khovanov - Lauda - Rouquiers candidate $2$-categorification of a quantum group using algebraic rewriting methods. We use a computational approach based on rewriting modulo the isotopy axioms of its pivotal structure to comp
We introduce a generalization of the notion of a negligible morphism and study the associated tensor ideals and thick ideals. These ideals are defined by considering deformations of a given monoidal category $mathcal{C}$ over a local ring $R$. If the