ﻻ يوجد ملخص باللغة العربية
We present narrow-band near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the molecular hydrogen (H$_{2}$) 2.122 $mu$m and Br$gamma$ 2.166 $mu$m emission lines and the $K_{rm c}$ 2.218 $mu$m continuum. These images were collected with the Wide-field InfraRed Camera (WIRCam) on the 3.6m Canada-France-Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H$_{2}$ emission in several PNe, some of these being the first detection. The nebular morphologies in H$_{2}$ emission are studied in analogy with the optical images, and indication on stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC6772 is witnessed in H$_{2}$, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H$_{2}$ emission and the bipolarity of PNe. The knotty/filamentary fine structures of the H$_{2}$ gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots/clumps embedded within fully ionized material at the equatorial regions. Moreover, the deep H$_{2}$ image of the butterfly-shaped Sh1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morpho-kinematic studies that are desired to deduce the true physical structures of a few PNe in the sample.
We report a multi-wavelength study of two evolved planetary nebulae (PNs) M 2-55 and Abell 2. Deep optical narrow-band images ([O III], H?, and [N II]) of M 2-55 reveal two pairs of bipolar lobes and a new faint arc-like structure. This arc-shaped fi
We present interferometric, full-polarization observations of the four ground-state transitions of OH, toward five confirmed and one candidate OH-emitting planetary nebulae (OHPNe). OHPNe are believed to be very young PNe, and information on their ma
Deep spectrophotometry has proved to be a fundamental tool to improve our knowledge on the chemical content of planetary nebulae. With the arrival of very efficient spectrographs installed in the largest ground-based telescopes, outstanding spectra h
We identify [Se III] 1.0994 micron in the planetary nebula (PN) NGC 5315 and [Kr VI] 1.2330 micron in three PNe, from spectra obtained with the FIRE spectrometer on the 6.5-m Baade Telescope. Se and Kr are the two most widely-detected neutron-capture
Nebular spectroscopy is a valuable tool for assessing the production of heavy elements by slow neutron(n)-capture nucleosynthesis (the s-process). Several transitions of n-capture elements have been identified in planetary nebulae (PNe) in the last f