ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-Driven Investigative Journalism For Connectas Dataset

55   0   0.0 ( 0 )
 نشر من قبل Aniket Jain
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The following paper explores the possibility of using Machine Learning algorithms to detect the cases of corruption and malpractice by governments. The dataset used by the authors contains information about several government contracts in Colombia from year 2007 to 2012. The authors begin with exploring and cleaning the data, followed by which they perform feature engineering before finally implementing Machine Learning models to detect anomalies in the given dataset.



قيم البحث

اقرأ أيضاً

After the peace agreement of 2016 with FARC, the killings of social leaders have emerged as an important post-conflict challenge for Colombia. We present a data analysis based on official records obtained from the Colombian General Attorneys Office s panning the time period from 2012 to 2017. The results of the analysis show a drastic increase in the officially recorded number of killings of democratically elected leaders of community organizations, in particular those belonging to Juntas de Accion Comunal [Community Action Boards]. These are important entities that have been part of the Colombian democratic apparatus since 1958, and enable communities to advocate for their needs. We also describe how the data analysis guided a journalistic investigation that was motivated by the Colombian governments denial of the systematic nature of social leaders killings.
177 - Aysenur Bilgin 2018
With the growing abundance of unlabeled data in real-world tasks, researchers have to rely on the predictions given by black-boxed computational models. However, it is an often neglected fact that these models may be scoring high on accuracy for the wrong reasons. In this paper, we present a practical impact analysis of enabling model transparency by various presentation forms. For this purpose, we developed an environment that empowers non-computer scientists to become practicing data scientists in their own research field. We demonstrate the gradually increasing understanding of journalism historians through a real-world use case study on automatic genre classification of newspaper articles. This study is a first step towards trusted usage of machine learning pipelines in a responsible way.
Digital data is a gold mine for modern journalism. However, datasets which interest journalists are extremely heterogeneous, ranging from highly structured (relational databases), semi-structured (JSON, XML, HTML), graphs (e.g., RDF), and text. Journ alists (and other classes of users lacking advanced IT expertise, such as most non-governmental-organizations, or small public administrations) need to be able to make sense of such heterogeneous corpora, even if they lack the ability to define and deploy custom extract-transform-load workflows, especially for dynamically varying sets of data sources. We describe a complete approach for integrating dynamic sets of heterogeneous datasets along the lines described above: the challenges we faced to make such graphs useful, allow their integration to scale, and the solutions we proposed for these problems. Our approach is implemented within the ConnectionLens system; we validate it through a set of experiments.
115 - Oana Balalau 2020
Nowadays, journalism is facilitated by the existence of large amounts of digital data sources, including many Open Data ones. Such data sources are extremely heterogeneous, ranging from highly struc-tured (relational databases), semi-structured (JSON , XML, HTML), graphs (e.g., RDF), and text. Journalists (and other classes of users lacking advanced IT expertise, such as most non-governmental-organizations, or small public administrations) need to be able to make sense of such heterogeneous corpora, even if they lack the ability to de ne and deploy custom extract-transform-load work ows. These are di cult to set up not only for arbitrary heterogeneous inputs , but also given that users may want to add (or remove) datasets to (from) the corpus. We describe a complete approach for integrating dynamic sets of heterogeneous data sources along the lines described above: the challenges we faced to make such graphs useful, allow their integration to scale, and the solutions we proposed for these problems. Our approach is implemented within the ConnectionLens system; we validate it through a set of experiments.
Data-driven approaches, most prominently deep learning, have become powerful tools for prediction in many domains. A natural question to ask is whether data-driven methods could also be used to predict global weather patterns days in advance. First s tudies show promise but the lack of a common dataset and evaluation metrics make inter-comparison between studies difficult. Here we present a benchmark dataset for data-driven medium-range weather forecasting, a topic of high scientific interest for atmospheric and computer scientists alike. We provide data derived from the ERA5 archive that has been processed to facilitate the use in machine learning models. We propose simple and clear evaluation metrics which will enable a direct comparison between different methods. Further, we provide baseline scores from simple linear regression techniques, deep learning models, as well as purely physical forecasting models. The dataset is publicly available at https://github.com/pangeo-data/WeatherBench and the companion code is reproducible with tutorials for getting started. We hope that this dataset will accelerate research in data-driven weather forecasting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا