We show, using either Fock space techniques or Macdonald difference operators, that certain symplectic and orthogonal analogues of Okounkovs Schur measure are determinantal with kernels given by explicit double contour integrals. We give two applications: one equates certain Toeplitz+Hankel determinants of random matrix theory with appropriate Fredholm determinants and computes SzegH{o} asymptotics for the former; another finds that the simplest examples of said measures exhibit discrete sine kernel asymptotics in the bulk and Airy 2 to 1 kernel---along with a certain dual---asymptotics at the edge. We believe the edge behavior to be universal.