ترغب بنشر مسار تعليمي؟ اضغط هنا

Recovering the boundary path space of a topological graph using pointless topology

145   0   0.0 ( 0 )
 نشر من قبل Gilles de Castro
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

First, we generalize the definition of a locally compact topology given by Paterson and Welch for a sequence of locally compact spaces to the case where the underlying spaces are $T_1$ and sober. We then consider a certain semilattice of basic open sets for this topology on the space of all paths on a graph and impose relations motivated by the definitions of graph C*-algebra in order to recover the boundary path space of a graph. This is done using techniques of pointless topology. Finally, we generalize the results to the case of topological graphs.



قيم البحث

اقرأ أيضاً

Singularities play an important role in General Relativity and have been shown to be an inherent feature of most physically reasonable space-times. Despite this, there are many aspects of singularities that are not qualitatively or quantitatively und erstood. The abstract boundary construction of Scott and Szekeres has proven to be a flexible tool with which to study the singular points of a manifold. The abstract boundary construction provides a boundary for any n-dimensional, paracompact, connected, Hausdorff, smooth manifold. Singularities may then be defined as entities in this boundary - the abstract boundary. In this paper a topology is defined, for the first time, for a manifold together with its abstract boundary. This topology, referred to as the attached point topology, thereby provides us with a description of how the abstract boundary is related to the underlying manifold. A number of interesting properties of the topology are considered, and in particular, it is demonstrated that the attached point topology is Hausdorff.
The abstract boundary construction of Scott and Szekeres provides a `boundary for any n-dimensional, paracompact, connected, Hausdorff, smooth manifold. Singularities may then be defined as objects within this boundary. In a previous paper by the aut hors, a topology referred to as the attached point topology was defined for a manifold and its abstract boundary, thereby providing us with a description of how the abstract boundary is related to the underlying manifold. In this paper, a second topology, referred to as the strongly attached point topology, is presented for the abstract boundary construction. Whereas the abstract boundary was effectively disconnected from the manifold in the attached point topology, it is very much connected in the strongly attached point topology. A number of other interesting properties of the strongly attached point topology are considered, each of which support the idea that it is a very natural and appropriate topology for a manifold and its abstract boundary.
Let $C(mathbf I)$ be the set of all continuous self-maps from ${mathbf I}=[0,1]$ with the topology of uniformly convergence. A map $fin C({mathbf I})$ is called a transitive map if for every pair of non-empty open sets $U,V$ in $mathbf{I}$, there exi sts a positive integer $n$ such that $Ucap f^{-n}(V) ot=emptyset.$ We note $T(mathbf{I})$ and $overline{T(mathbf{I})}$ to be the sets of all transitive maps and its closure in the space $C(mathbf I)$. In this paper, we show that $T(mathbf{I})$ and $overline{T(mathbf{I})}$ are homeomorphic to the separable Hilbert space $ell_2$.
284 - Maysam Maysami Sadr 2017
We study some topological spaces that can be considered as hyperspaces associated to noncommutative spaces. More precisely, for a NC compact space associated to a unital C*-algebra, we consider the set of closed projections of the second dual of the C*-algebra as the hyperspace of closed subsets of the NC space. We endow this hyperspace with an analog of Vietoris topology. In the case that the NC space has a quantum metric space structure in the sense of Rieffel we study the analogs of Hausdorff and infimum distances on the hyperspace. We also formulate some interesting problems about distances between sub-circles of a quantum torus.
This article is devoted to studying the non-commutative Poisson boundary associated with $Big(Bbig(mathcal{F}(mathcal{H})big), P_{omega}Big)$ where $mathcal{H}$ is a separable Hilbert space (finite or infinite-dimensional), $dim mathcal{H} > 1$, wi th an orthonormal basis $mathcal{E}$, $Bbig(mathcal{F}(mathcal{H})big)$ is the algebra of bounded linear operators on the full Fock space $mathcal{F}(mathcal{H})$ defined over $mathcal{H}$, $omega = {omega_e : e in mathcal{E} }$ is a sequence of positive real numbers such that $sum_e omega_e = 1$ and $P_{omega}$ is the Markov operator on $Bbig(mathcal{F}(mathcal{H})big)$ defined by begin{align*} P_{omega}(x) = sum_{e in mathcal{E}} omega_e l_e^* x l_e, x in Bbig(mathcal{F}(mathcal{H})big), end{align*} where, for $e in mathcal{E}$, $l_e$ denotes the left creation operator associated with $e$. The non-commutative Poisson boundary associated with $Big(Bbig(mathcal{F}(mathcal{H})big), P_{omega}Big)$ turns out to be an injective factor of type $III$ for any choice of $omega$. Moreover, if $mathcal{H}$ is finite-dimensional, we completely classify the Poisson boundary in terms of its Connes $S$-invarinat and curiously they are type $III _{lambda }$ factors with $lambda$ belonging to a certain small class of algebraic numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا