ﻻ يوجد ملخص باللغة العربية
We study the problem of recovering a block-sparse signal from under-sampled observations. The non-zero values of such signals appear in few blocks, and their recovery is often accomplished using a $ell_{1,2}$ optimization problem. In applications such as DNA micro-arrays, some prior information about the block support, i.e., blocks containing non-zero elements, is available. A typical way to consider the extra information in recovery procedures is to solve a weighted $ell_{1,2}$ problem. In this paper, we consider a block sparse model, where the block support has intersection with some given subsets of blocks with known probabilities. Our goal in this work is to minimize the number of required linear Gaussian measurements for perfect recovery of the signal by tuning the weights of a weighted $ell_{1,2}$ problem. For this goal, we apply tools from conic integral geometry and derive closed-form expressions for the optimal weights. We show through precise analysis and simulations that the weighted $ell_{1,2}$ problem with optimal weights significantly outperforms the regular $ell_{1,2}$ problem. We further examine the sensitivity of the optimal weights to the mismatch of block probabilities, and conclude stability under small probability deviations.
This paper considers the problem of recovering a structured signal from a relatively small number of noisy measurements with the aid of a similar signal which is known beforehand. We propose a new approach to integrate prior information into the stan
In this work, we consider the problem of recovering analysis-sparse signals from under-sampled measurements when some prior information about the support is available. We incorporate such information in the recovery stage by suitably tuning the weigh
The orthogonal matching pursuit (OMP) algorithm is a commonly used algorithm for recovering $K$-sparse signals $xin mathbb{R}^{n}$ from linear model $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix. A fundamental question in the performan
We present a method to compute, quickly and efficiently, the mutual information achieved by an IID (independent identically distributed) complex Gaussian input on a block Rayleigh-faded channel without side information at the receiver. The method acc
We consider the problem of testing for the presence (or detection) of an unknown sparse signal in additive white noise. Given a fixed measurement budget, much smaller than the dimension of the signal, we consider the general problem of designing comp