ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

88   0   0.0 ( 0 )
 نشر من قبل Dan Prole MPhys
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, {tt DeepScan}, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree$^2$ portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with $26.0leqlangle mu_{e}rangleleq28.5$ and $19leq m_{g}leq21$, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of $10^{6.3pm0.5} M_{odot}$ assuming cluster membership. After using {tt ProFit} to fit Sersic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.



قيم البحث

اقرأ أيضاً

We have discovered 11 ultra-faint ($rlesssim 22.1$) low surface brightness (LSB, central surface brightness $23lesssim mu_rlesssim 26$) dwarf galaxy candidates in one deep Virgo field of just $576$ arcmin$^2$ obtained by the Large Binocular Camera (L BC) at the Large Binocular Telescope (LBT). Their association with the Virgo cluster is supported by their distinct position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. They have typical absolute magnitudes and scale sizes, if at the distance of Virgo, in the range $-13lesssim M_rlesssim -9$ and $250lesssim r_slesssim 850$ pc, respectively. Their colors are consistent with a gradually declining star formation history with a specific star formation rate of the order of $10^{-11}$ yr$^{-1}$, i.e. 10 times lower than that of main sequence star forming galaxies. They are older than the cluster formation age and appear regular in morphology. They represent the faintest extremes of the population of low luminosity LSB dwarfs that has been recently detected in wider surveys of the Virgo cluster. Thanks to the depth of our observations we are able to extend the Virgo luminosity function down to $M_rsim -9.3$ (corresponding to total masses $Msim 10^7$ M$_{odot}$), finding an average faint-end slope $alphasimeq -1.4$. This relatively steep slope puts interesting constraints on the nature of the Dark Matter and in particular on warm Dark Matter (WDM) often invoked to solve the overprediction of the dwarf number density by the standard CDM scenario. We derive a lower limit on the WDM particle mass $>1.5$ keV.
113 - J. E. Krick , C. Bridge , V. Desai 2011
We present 3.6 and 4.5 micron Spitzer IRAC imaging over 0.77 square degrees at the Virgo cluster core for the purpose of understanding the formation mechanisms of the low surface brightness intracluster light features. Instrumental and astrophysical backgrounds that are hundreds of times higher than the signal were carefully characterized and removed. We examine both intracluster light plumes as well as the outer halo of the giant elliptical M87. For two intracluster light plumes, we use optical colors to constrain their ages to be greater than 3 & 5 Gyr, respectively. Upper limits on the IRAC fluxes constrain the upper limits to the masses, and optical detections constrain the lower limits to the masses. In this first measurement of mass of intracluster light plumes we find masses in the range of 5.5 x 10^8 - 4.5 x 10^9 and 2.1 x 10^8 - 1.5 x 10^9 solar masses for the two plumes for which we have coverage. Given their expected short lifetimes, and a constant production rate for these types of streams, integrated over Virgos lifetime, they can account for the total ICL content of the cluster implying that we do not need to invoke ICL formation mechanisms other than gravitational mechanisms leading to bright plumes. We also examined the outer halo of the giant elliptical M87. The color profile from the inner to outer halo of M87 (160 Kpc) is consistent with either a flat or optically blue gradient, where a blue gradient could be due to younger or lower metallicity stars at larger radii. The similarity of the age predicted by both the infrared and optical colors (> few Gyr) indicates that the optical measurements are not strongly affected by dust extinction.
We describe a new, deep photographic survey of the Virgo Cluster which uses multiple exposures on Tech Pan film with the United Kingdom Schmidt Telescope to probe the dwarf population to fainter surface brightness limits than previous surveys. We hav e identified galaxies having sizes (>= 3 arcsec scale length) and surface brightnesses (<= 24.5 R mag arcsec^-2) characteristic of those expected for dwarf spheroidal galaxies in the cluster. The survey is providing substantial samples of extremely low luminosity galaxies outside the environment of the Local Group and nearby groups for the first time. An initial study of two small areas has found dwarf spheroidal candidates in large numbers (500 deg^-2) which indicate a steep, continuously rising luminosity function at low luminosities.
We report the discovery of 11 very faint (r< 23), low surface brightness ({mu}_r< 27 mag/arcsec^2) dwarf galaxies in one deep field in the Virgo cluster, obtained by the prime focus cameras (LBC) at the Large Binocular Telescope (LBT). These extend o ur previous sample to reach a total number of 27 galaxies in a field of just of 0.17 deg^2 located at a median distance of 390 kpc from the cluster center. Their association with the Virgo cluster is supported by their separate position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. For a significant fraction (26%) of the sample the association to the cluster is confirmed by spectroscopic follow-up. We show that the mere abundance of satellite galaxies corresponding to our observed number in the target field provides extremely tight constraints on Dark Matter models with suppressed power spectrum compared to the Cold Dark Matter case, independently of the galaxy luminosity distribution. In particular, requiring the observed number of satellite galaxies not to exceed the predicted abundance of Dark Matter sub-halos yields a limit m_X >3 keV at 1-{sigma} and m_X > 2.3 keV at 2-{sigma} confidence level for the mass of thermal Warm Dark Matter particles. Such a limit is competitive with other limits set by the abundance of ultra-faint satellite galaxies in the Milky Way, is completely independent of baryon physics involved in galaxy formation, and has the potentiality for appreciable improvements with next observations. We extend our analysis to Dark Matter models based on sterile neutrinos, showing that our observations set tight constraints on the combination of sterile neutrino mass m_{ u} and mixing parameter sin^2(2{theta}). We discuss the robustness of our results with respect to systematics.
Dwarf spheroidal galaxies (dSphs) are mostly investigated in the Local Group. DSphs are difficult targets for observations because of their small size and very low surface brightness. Here we measure spectroscopic and photometric parameters of three candidates for isolated dSphs, KKH65=BTS23, KK180, and KK227, outside the Local Group. The galaxies are found to be of low metallicity and low velocity dispersion. They are among the lowest surface brightness objects in the Local Universe. According to the measured radial velocities, metallicities, and structural and photometric parameters, KKH65 and KK227 are representatives of the ultra-diffuse quenched galaxies. KKH65 and KK227 belong to the outer parts of the groups NGC3414 and NGC5371, respectively. KK180 is located in the Virgo cluster infall region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا