ﻻ يوجد ملخص باللغة العربية
The problem of one-dimensional randomly forced Burgers turbulence is considered in terms of (1+1) directed polymers. In the limit of strong turbulence (which corresponds to the zero temperature limit for the directed polymer system) using the replica technique a general explicit expression for the joint distribution function of two velocities separated by a finite distance is derived. In particular, it is shown that at length scales much smaller than the injection length of the Burgers random force the moments of the velocity increment exhibit typical strong intermittency behavior.
We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the dynamic case); (ii) the
The phenomenology of velocity statistics in turbulent flows, up to now, relates to different models dealing with either signed or unsigned longitudinal velocity increments, with either inertial or dissipative fluctuations. In this paper, we are conce
We consider the steady states of a driven inelastic Maxwell gas consisting of two types of particles with scalar velocities. Motivated by experiments on bilayers where only one layer is driven, we focus on the case when only one of the two types of p
We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test particle plays the role of a microscopic piston that separates two hard-point gases with different concentrations and arbitrary initial velo
We consider the Cauchy problem for the Burgers hierarchy with general time dependent coefficients. The closed form for the Greens function of the corresponding linear equation of arbitrary order $N$ is shown to be a sum of generalised hypergeometric